Otra clasificación de materiales carbonosos

Gregorio Marbán y Conchi Ania Instituto Nacional del Carbón (INCAR) - CSIC c/ Francisco Pintado Fe 26, 33011 Oviedo (Spain) E-mail: greca@incar.csic.es, conchi@incar.csic.es

Llevar a cabo una clasificación de materiales de carbono es algo a lo que casi todos los investigadores relacionados con el mundillo se han visto abocados, o al menos tentados, en algún momento de sus carreras investigadoras.

Al igual que todos los aficionados al fútbol son entrenadores potenciales del equipo de sus pasiones, todos los investigadores en materiales de carbono se consideran igualmente potenciales "clasificadores". En general casi todas las clasificaciones acaban pareciéndose entre sí, como no puede ser de otro modo, y debiendo su estructura jerarquizada a los trabajos de reconocidos popes del campo como los doctores Rodríguez Reinoso, Radovic, Marsh, Inagaki, etc.

Obviamente no es objeto de esta ¿nueva? clasificación enmendar la plana a los mencionados investigadores, incluyendo los cientos que pugnan por salir de la brevedad de un conciso etcétera, sino más bien todo lo contrario; rendirles homenaje.

Cuando hace más o menos ocho años uno de los co-autores de esta clasificación, Gregorio Marbán, esbozó su primera versión, no lo hizo para aportar sus escasos conocimientos en el tema a la comunidad científica, sino con el menos pretencioso objetivo de ordenar sus ideas durante la preparación de los ejercicios de un concurso oposición. Para la ejecución de la tarea sólo fue necesario sumariar la información ya recogida de forma exhaustiva en publicaciones de los antedichos investigadores, así como en handbooks sobre materiales carbonosos.

El resultado fue una clasificación tabulada de pocas hojas que tenía el aliciente de incluir algunas breves notas sobre los procedimientos de producción y aplicaciones reales y potenciales de los distintos materiales. En sí la clasificación no habría pasado de un simple ejercicio académico de no haber llamado la atención de uno de los co-opositores, que gentilmente se ofreció a "valorar" sus contenidos. ¡Tiempos lejanos cuando la amistad prevalecía sobre la competitividad!.

A lo largo de años posteriores la clasificación fue transmitida mediante el clásico soporte de la fotocopia y utilizada con fines de diversa índole por otros investigadores del Instituto Nacional del Carbón de Oviedo, lo cual finalmente nos llevó a pensar que podría ser también de utilidad en el ámbito más amplio del Grupo Español del Carbón. Sin embargo, en el transcurso de menos de una decena de años la inagotable fertilidad del campo de materiales

carbonosos ha producido infinidad de nuevos especímenes, a la vez que otros viejos han cambiado de jerarquía en función de los nuevos conocimientos.

La apetencia casi lujuriosa que poseen los átomos de carbono para combinarse tanto entre sí como con otros elementos o materiales dando lugar a nuevas formas y estructuras 3-D parece casi ilimitada.

Así, dependiendo de la organización de los átomos de carbono, o de la presencia de heteroátomos y sus combinaciones, los materiales resultantes presentan propiedades y estructuras muy diversas, lo que los hace insustituibles en numerosos campos de aplicación, tanto como materiales estructurales como con otra funcionalidad.

El crecimiento exponencial de la familia de los materiales de carbono en estos últimos años es consecuencia directa de la extensa investigación que se está llevando a cabo en diversos ámbitos. Junto a los materiales tradicionales -grafito, diamante o carbón activado-, la investigación y el desarrollo de nuevos métodos de síntesis ha motivado la aparición de nuevas estructuras (espumas, geles, fibras, películas de carbono), formas alotrópicas insólitas (fullerenos, nanotubos, nanoespumas), materiales con propiedades diseñadas a medida (control de la porosidad, estructuras jerarquizadas) o materiales híbridos multifuncionales (compuestos de intercalación, materiales compuestos carbono/carbono, metalocarbohedrenos). Incluir los nuevos materiales en la clasificación se presentaba como una tarea ingente.

Afortunadamente el guante de la renovación fue recogido por la doctora Conchi Ania, co-autora de este trabajo, que no sólo proporcionó el empaque que ahora posee la clasificación, sino que pulió multitud de defectos que pasaron por alto en su redacción prístina. En la labor de revisión también ayudaron los doctores Marcos Granda, María Antonia Díez-Díaz Estébanez y Ángel Menéndez, cuyos comentarios fueron siempre muy valiosos.

Nuestro objetivo final ha sido realizar una clasificación sencilla y actualizada de los materiales de carbono, proporcionando una visión global del estado actual del arte.

El criterio de clasificación escogido se basa en la distinción entre materiales carbonosos simples y compuestos, atendiendo a la presencia de elementos o materiales que modifiquen significativamente las propiedades del material carbonoso. En cualquier caso, la elección de criterios diferentes a los

escogidos daría lugar a clasificaciones alternativas a la aquí propuesta, igualmente válidas.

Se han incluido los materiales tradicionales junto con las denominadas 'nuevas formas de carbono', haciendo especial hincapié en aquellos materiales que han adquirido gran relevancia en las últimas décadas por su elevado potencial en campos de aplicación emergentes, y en nuevos procedimientos de síntesis que permiten diseñar 'a medida' las propiedades de los materiales resultantes en función de su aplicación final.

Esperamos finalmente que la clasificación pueda servir a cualquier iniciante en el mundo de los materiales carbonosos de punto de apoyo para impulsarse hacia más altas cotas de conocimiento en la materia, del que son activos productores a nivel mundial muchos de los integrantes del Grupo Español del Carbón.

Literatura recomendada

Gogotsi Y (Ed.), en Nanomaterials Handbook, CRC Press, 2006

Inagaki M, en New carbons. Control of structure and functions, Elsevier Science, Oxford, 2000 New Carbon Based Materials for Electrochemical Energy Storage Systems, NATO Science Series, 229, Springer, Dordrecht, The Netherlands, 2006

Activated Carbon Surfaces in Environmental Remediation, TJ Bandosz Ed., Elsevier, New York, 2006

Pierson HO, en Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (Materials Science and Process Technology), Elsevier, New Jersey, 1994 Lee J, Kim J, Hyeon T, Recent Progress in the Synthesis of Porous Carbon Materials, Adv. Mater, 18, 2073, 2006

Kyotani T, Control of pore structure in carbon, Carbon 38, 269, 2000.

Marsh H, Rodríguez-Reinoso F, en Activated Carbon, Elsevier, London, 2006.

Marsh H, Heintz E, Rodríguez-Reinoso F, en Introduction to carbon Technologies, University of Alicante, Alicante, 1997

Pilato LA, Michno, JM, en Advanced Composite Materials, Springer-Verlag, Berlin, 1994 Donnet JB, Wang TK, Peng JCM, Rebouillat S (Eds.), en Carbon Fibers, Marcel Dekker Inc., New York, 1998

Glosario de abreviaturas

AAO: Anodic aluminium oxide a-C: Amorphous carbon ADNR: Aggregated diamond

nanorods

API: Addition-reaction polyimides

BMI: Bismaleimida

C/C: Composites carbono / carbono **CBCF:** *Carbon-bonded carbon fiber*

composite

CFRC: Carbon fiber reinforced

cement

CFRCer: Carbon fiber reinforced

ceramics

CFRP: Carbon fiber reinforced plastic

CPI: Condensation-reaction

polyimides

CVD: Chemical vapor deposition CVI: Chemical vapor infiltration DLC: Diamond-like carbon ESA: Electrothermal swing adsorption

G: Grafitizable
GP: General purpose
HCF: Hidrofluorocarbono
HCFC: Hidroclorofluorocarbono

HDN: Hidrodesnitrogenación **HDS:** Hidrodesulfuración

HOPG: Highly ordered pyrolytic

graphite

HP: High performance **ITO:** Indium tin oxide

HIFI: High fidelity

MCMB: Mesocarbon microbeads
MWCNT: Multiwall carbon nanotube

NG: No grafitizable
ORNL: Oak Ridge National

Laboratory P: Presión

PF: Fenólico/a

PAN: Poliacrilonitrilo
PBI: Polibencimidazol

PBO: Poli(p-fenileno benzobisoxazol)
PBT: Poli(butileno tereftalato)
PCB's: Bifenilos policlorados
PEEK: Poliéter-éter cetona
PEK: Poliéter cetona

PGS: Pyrolytic Graphite Sheet **PPP:** Poli(p-fenileno)

PPS: Sulfuro de polifenileno **PPT:** Pyromellitic dianhydride-p-

phenylenediamine-

3,3',4,4'-tetraaminobiphenyl
PPTA: Poli(p-fenileno tereftalamida)
PSA: Pressure swing adsorption
PTFE: Politetrafluoroetileno
PVC: Cloruro de polivinilo

PVD: Physical vapor deposition PVDC: Policloruro de vinilideno Sg: Superficie específica

Sg: Superticie especiti SA: Sudáfrica

SCR: Selective catalytic reduction

(de NO)

SWCNH: Single wall carbon

nanohorn

SWCNT: Single wall carbon nanotube

T: Temperatura

TGMDA: Tetraglicidil metileno

dianilina

THF: Tetrahidrofurano

TSA: Temperature swing adsorption VGCF: Vapor grown carbon fibers VOC's: Volatile organic compounds p:densidad

Clasificación de materiales carbonosos simples

Producto carbonoso	Grupo de materiales o proceso de fabricación	Precursor	G/NG	Forma	Aplicaciones	
		Hibrida	ción	sp ³ (G: grafitizable NG: No grafitizable		
Lonsdaleíta Forma alotrópica	Diamante en sistema cristalino hexagonal	Origen meteorítico. Compresión de grafito. Descomposición térmica [HC] _n 1bar; 110-1000°C; Ar	,	Cristales agregados	-	
Nanodiamante Forma alotrópica	Molienda polvo diamante [Mypolex, Dupont] Irradiación de electrones; CVD (baja P, T moderada) Detonación (alta T y P)	Grafito, C ₆₀ , MWCNT, nanocebollas		Películas, ó cristales de algunos nm de diámetro, según síntesis	Refuerzo de acero y materiales compuestos (resistencia corrosión) Posibles aplicaciones en medicina como transportador de fármacos (en estudio)	
·	Agregados de diamante nanocilíndricos (ADNR) (Dubrovinskaia, 2004)	Compresión C ₆₀ [20 GPa, 2800 °C]	1	Agregados interconectados de diámetro entre 5-20 nm y longitud 1 μm	Especulativas Posible aplicación en herramientas de corte como superabrasivo	
	Diamante natural	Kimberlita	-	Cristales de ~0.02 g		
Diamante (no considerado	Diamante sintético de alta presión (método explosivo). Dupont	Coque de brea grafitizado (catalizador solvente = Fe) [300 kbar, 700°C]	-	Pequeños diamantes policristalinos de hasta 60 μm		
como material carbonoso en las clasificaciones al	Diamante sintético de alta presión (método hidráulico). Beers (SA)	Coque de brea grafitizado (catalizador solvente = Fe-Ni) [55-60 kbar, 1500°C]	1	Cristales comerciales de hasta 6 mm (hasta 2 carats = 0.4 g)	Gemas, molienda, cortado, pulido, etc.	
uso) Forma alotrópica	Diamante CVD (T formación H atómico = 2000°C; T substrato = 800-1000°C).	CH ₄ , alifáticos, aromáticos, etc. + H (elimina sp ² y estabiliza sp ³). Activación: plasma, hot-wire	,	Recubrimientos policristalinos (grosor de hasta 1 mm)		
		Hibridaci	ón sp	o ³ -sp ²		
Carbón amorfo Forma alotrópica Hibridación sp² + sp³ (mayoritaria sp³)	Carbón tipo diamante (DLC) hecho por PVD Carbón tipo diamante (DLC hecho por PVD/CVD)	Grafito bombardeado con Ar (se forma C por 'sputtering') [a-C] CH ₄ ó nC ₄ H ₁₀ ó C ₂ H ₂ + H ₂ activado por radiofrecuencia [a-C:H]	NG	Recubrimientos de hasta 1 μm	Recubrimiento de materiales a baja temperatura (<300°C). Substituto de teflón y otros recubrimientos (carburos y nitruros) para aplicaciones de fricción a baja temperatura. Máscara en litografía de circuitos impresos. Ventanas ópticas en infrarrojos y láser. Lubricante sólido. Prótesis ortopédicas	
Fullerenos (Kroto, 1985)	Vaporización láser	Grafito + pulso de Helio	-		Semiconductores (M ₆ C ₆₀), superconductores (M ₃ C ₆₀), limitadores ópticos,	
alotrópica Hibridación intermedia sp ^x (2 <x<3) C₆₀: sp^{2.28}</x<3) 	Arco eléctrico	Grafito en atmósfera de He (200 torr)	,	Cristales moleculares	fotoconductividad (como dopantes de polímeros), síntesis de SiC y diamante, encapsulación de gases, aplicaciones terapéuticas células fotovoltaicas	
Nanoespumas (Rode, 1997) Forma alotrópica Hibridación intermedia sp ^x (2 <x<3)< td=""><td>Irradiación de láser de alta potencia en cámara de argón [T=10000°C; P>0.1 torr]</td><td>Carbón vítreo</td><td>-</td><td>Red 3D de heptágonos y hexágonos (curvatura inversa); contiene electrones desapareados</td><td>Semiconductor. Propiedades magnéticas y ferromagnéticas, potencial aplicación en biomedicina</td></x<3)<>	Irradiación de láser de alta potencia en cámara de argón [T=10000°C; P>0.1 torr]	Carbón vítreo	-	Red 3D de heptágonos y hexágonos (curvatura inversa); contiene electrones desapareados	Semiconductor. Propiedades magnéticas y ferromagnéticas, potencial aplicación en biomedicina	
Estructuras hipotéticas	'Haeckalites' (Terrones, 2000)		-	Nanotubos formados por anillos de 5, 6 y 7 átomos de carbono	Estructuros bis státicos	
	'High genus fullerene' Terrones (2000)		-	Estructura toroidal con anillos de 6 y 7 átomos de C	Estructuras hipotéticas (formas alotrópicas propuestas en función de cálculos energéticos favorables)	
	'Schwarzites' (Terrones, 2000)		-	Estructuras 2D con anillos de 5 y 7 átomos de C		

Г	Producto	Grupo de materiales o	Precursor	G/NG	Forma	Aplicaciones		
ŀ	carbonoso	proceso de fabricación Irradiación de electrones	11000.001	0,110		7.011000101100		
П	Esferas de carbono concéntricas	hacia nanopartículas de carbono con caras planas ('faceted')	Nanopartículas de carbono	-	Esferas concéntricas (cebollas, hasta 10 nm)	Especulativas		
l		Vaporización láser sobre blanco de grafito, Ar; 1200°C	Blanco de grafito		70%; SWCNT, sin defectos	Conductores y semiconductores. Refuerzo de composites muy finos y resistentes (gran elasticidad).		
l	Nanotubos (lijima, 1991)	Arco eléctrico sobre electrodo de grafito, He/Ar	Blanco de grafito		30-90%; SWCNT+ MWCNT; tubos cortos con defectos	Pantallas y sondas de electrones. Sensores. Baterías de Li. Pilas de combustible. Supercondensadores.		
		CVD catalítica	[10%C ₂ H ₂ / N ₂] ; CO Catalizadores: Fe, Co, Ni	1	MWCNT con defectos	Catalizadores (etilbenzeno a estireno). Transistores. Medicina		
l	Hibridación intermedia sp ^x (2 <x<3)< th=""><td>Molde de óxido de aluminio anodizado (AAO)</td><td>I) CVD no catalítica: C₃H₈ II) Impregnación fase líquida (alcohol furfurílico, poliacrilonitrilo) + carbonización</td><td>G</td><td>MWCNT, tubos largos y abiertos por los extremos, alineados</td><td>Sistemas fotovoltaicos (torres 3D) miniaturizados; membranas en separación de aceites</td></x<3)<>	Molde de óxido de aluminio anodizado (AAO)	I) CVD no catalítica: C ₃ H ₈ II) Impregnación fase líquida (alcohol furfurílico, poliacrilonitrilo) + carbonización	G	MWCNT, tubos largos y abiertos por los extremos, alineados	Sistemas fotovoltaicos (torres 3D) miniaturizados; membranas en separación de aceites		
		Pirólisis en aerosol 'spray pyrolysis' + CVD catalítica	Disolución de benceno, xileno, etc. [Ar, Ar/H ₂ 85:15%] Catalizadores: ferroceno	,	Estructuras 3D alineadas 'forest'	pesados/ligeros; filtración agua por compresión		
		Nanotubos poligonales	Tratamiento MWCNT a 2000°C y alto vacío	-	Nanotubos multipared	Especulativas		
		'Nanohorns' (Harris, 1994)	Descarga por arco eléctrico o vaporización láser sobre electrodos de grafito (sin catalizador)	G	Agregados de partículas de 100 nm Monopared (SWCNH), películas			
l	Estructuras	Nanocoils, nanoribbons	CVD catalítica de hidrocarburos, resinas, (Fe, ITO)	G	Nanocoils, nanoribbons	Aplicaciones potenciales como: soportes de electrocatalizadores,		
П	rafíticas no lanas	Espirales ó 'nanoscrolls' (Viculis, 2003)	Intercalación/ exfoliación y tratamiento en ultrasonido de grafito	G	Espirales diámetro medio 40 nm	emisores de campo, medicina, adsorción CH ₄ , almacenamiento de H ₂ , intercalación de Li, electrónica		
		Conos (nanocones)	Descomposición de hidrocarburos sobre carbón tipo vidrio; condensación sobre sustrato de grafito	drocarburos sobre arbón tipo vidrio; G andensación sobre				
П		CVD método del sustrato	Hidrocarburos: benceno,		Filamentos tamaño			
	Nanofibras de carbono	CVD método del catalizador flotante	metano, acetileno, n-hexano, etc. Catalizadores: Fe, Ni, Co, etc.	G	submicrométrico. Estructuras tipo 'platelet', 'herringbone', 'ribbon', 'stacked-up'	Placas bipolares, soportes de electrocatalizadores, automoción, industria aeroespacial, adsorbentes separación y almacenamiento de		
l		Electrohilado	Mezcla coaxial de líquidos (glicerina, etanol, lignina)	-	Nanofibras huecas	gases, soportes de catalizadores		
		Fibras de uso general (grado GP, 'general purpose'). Se hacen termoestables tras la estabilización oxidativa.	Fracciones de breas de carbón y petróleo (fase isótropa) -cortes de destilación, extracción con disolventes-		Filamentos diámetro mínimo 10 μm.	Precursores de materiales porosos (adsorbentes, catalizadores, etc.). Refuerzo (relleno) de materiales compuestos (ver materiales compuestos de refuerzo fibrilar)		
	Fibras de carbono no grafitizables	Fibras de altas prestaciones (grado HP, 'high performance')	PAN (hilado húmedo) PAN (extrusión) Rayón	NG	Fibras sueltas cortas o continuas. Fieltros	Fibras de alto rendimiento. Precursores de materiales porosos (catalizadores, soportes de catalizadores, etc.)		
		Fibras tipo vidrio	Resinas fenólicas (Novolak), furánicas, etc. (fibras kynol)		tejidos y sin tejer. Mantas.	Precursores de materiales porosos (catalizadores, soportes de catalizadores, etc.)		
Ш		Fibras activadas	Ver materiales porosos					
Ш	Geles de carbono (Pekala, 1989) Hibridación sp ³ +sp ² +sp	Método sol-gel con catalizador básico [carbonato de sodio]	Resorcinol – formaldehído Ver materiales porosos	NG	Monolitos, composites, películas, polvos o microesferas (baja densidad y desarrollo poroso bimodal = mesoporos entre partículas, microporos en partículas)	Adsorbentes (de gas, purificación de agua). Soporte de catalizadores. Aislantes térmicos y acústicos. Elementos semiconductores, piezoeléctricos, dieléctricos y ferroeléctricos. Conductores (o aislantes) eléctricos. Supercondensadores de doble capa eléctrica. Desionización capacitiva.		
П	Carbón activado Hibridación sp³+sp²+sp	Ver materiales porosos						

Producto carbonoso		Grupo de materiales o roceso de fabricación	Precursor	G/NG	Forma	Aplicaciones	
Carbón pirolítico isótropo		D hidrocarburos (no catal	ítica)	NG	Láminas, recubrimientos	Recubrimiento y estabilización de materiales: catalizadores, ánodos baterías de Li, cátodos baterías primarias, partículas nucleares, etc.	
Espumas vítreas	pol	cnicas de insuflado de ímeros ó resinas + oumantes	Polímeros, resinas (fenol-formaldehído, urea-formaldehído) Espumantes: CO ₂ , He, HCF, pentano, HCFC	NG	Monolitos, películas,	Aislamiento térmico (industria aeroespacial) Disipación de calor en microprocesadores, parachoques y placas de absorción de impactos	
	Téd	cnicas de pirólisis	Breas, carbones (materia volátil del precursor actúa de agente espumante)		(automoción), convertidores catalíticos, soportes catalizadores, prótesis, electrodos para pilas, etc.		
Negros de carbono		gros de horno (90%. Com ntrolada de hidrocarburos			Partículas ~12 -75 nm (S _g ~25-1500 m ² /g). aglomeradas en distintos tamaños.	Relleno de neumáticos (90%). Base de tintas tipográficas (periódicos).	
(hibridación sp²+ sp³ Predominio sp²;	Ne nat	gros de canal (combustiór ural. Proceso de canales)	n incompleta de gas	NG	Partículas de ~10 nm (S _g ~150 m ² /g)	Pinturas, lacas, rellenos de grafito sintético y muchas otras (p.ej. soportes de catalizadores)	
existencia 'dangling	Ne	gros térmicos (pirólisis de	gas natural)		Partículas de hasta ~500 nm (~25 m²/g)	Dilas assas Dellasa da ramas y	
bonds')		gros de acetileno (pirólisis	·		Partículas de 3-130 nm (65 m²/g)	Pilas secas. Relleno de gomas y plásticos	
		gros de humo (combustión mbustibles aromáticos: 'la			Partículas de 100-200 nm	Pigmento negro para tintas (tinta china) y pinturas	
			Hibrida	ción	sp ²		
Carbón tipo vidrio Forma alotrópica (hibridación sp², debate sobre presencia de estructuras tipo fullereno) (Harry, 2003)	Pirólisis de polímeros	- Resinas fenólicas term formaldehído (Resol y I alcalina], Novolak+hexa - Resinas epoxí (Bisfeno Metileno DiAnilina [TGN - Resinas SCN y SCS - Poliimidas: Larc-TPI (te - Alcohol polifurfurílico - PAN - Celulosa (rayón, viscos - PVDC (Saran) - Poli(p-fenileno) (PPP) - Alcohol polivinílico	Resitol) [catálisis amina [catálisis ácida]. I A epoxi; TetraGlicidil MDA]) rmoplástica - NG)	NG	Monolitos Espumas Microesferas	Monolitos: Crisoles, botes Electrodos de baterías, pilas de combustible, etc. Biocompatibilidad Espumas: Electrodos Li-ión, aislamiento térmico; adsorción de hidrocarburos (forma activada), filtro de partículas diesel, refuerzo de composites Microesferas: soporte de catalizadores, rellenos de baja densidad, etc.	
Grafito sintético		afito Acheson oceso Acheson, 1890)	Tratamiento térmico de coque + sílice (horno eléctrico, 2000-2500 °C)	_	Partículas de tamaño	Lubricantes, tintas, recubrimientos, electrodos, crisoles, lapiceros, escobillas de dinamos, etc.	
		rbono grafítico resiliente oceso Desulco)	Tratamiento térmico de coque de petróleo de bajo contenido en azufre		variado	Aplicaciones metalúrgicas (fabricación de hierro dulce y acero)	
	grado ordenamiento	Grafito pirolítico laminar y columnar	Descomposición de hidrocarburos (CH ₄ , C ₂ H ₆ , C ₂ H ₂ , C ₃ H ₆)		Monolitos, láminas (PGS de Matsushita), recubrimientos	Contenedores de alta temperatura. Botes y crisoles para epitaxia. Bases para CVD de semiconductores. Bocas de cohetes. Recubrimiento de partículas nucleares. Válvulas de corazón. Implantes dentales. Recubrimientos de fibras inorgánicas y ópticas. CVI de C/C (frenos, escudos térmicos, etc). Láminas de HOPG: Aislamiento eléctrico, partes de equipos HIFI.	
	Grafito alto grado c	Grafito a partir de poliimidas (grafito monolítico)	Poliimidas planas [Kapton, Novax, PPT] (Matsushida Electric Co. Ltd.)	-	Películas de varias micras de grosor; monolitos	Materiales de equipos HIFI (conos de altavoces). Cilindros de aislamiento eléctrico (cables). Aislante térmico, eléctrico y de radiación en equipamiento aeroespacial. Aplicaciones térmicas (aislante o conductor). Substrato flexible para circuitos eléctricos. Monocromadores de Rayos X y corrientes de neutrones.	
		Grafito Kish	Grafito precipitado en la producción de acero		Partículas amorfas planas (copos) de cristales simples de hasta 1 cm	Se añade como carbono de baja volatilidad para reducir óxidos de hierro en el proceso EnvIRONment	

Γ	Producto carbonoso			po de materiales o ceso de fabricación	Precursor	G/NG	Forma	Aplicaciones		
		des		exfoliado o inado ki)	Calentamiento abrupto de grafito intercalado: Grafito : VGCF, grafito sintético, etc. Intercalado : H ₂ SO ₄ , HNO ₃ , FeCl ₃ , K-THF, Na-THF	-	Láminas flexibles (Grafoil)	Gaskets (cintas de aislamiento para uniones, como los rollos de teflón), empaquetamiento y aislamiento; térmico a alta temperatura; limpieza de manchas de petróleo; catálisis.		
l			PV	С			Ánodos de disco, recubrimientos de impregnación.	Ánodo de batería Li-ión en la región 2. Impregnación de C/C.		
Ш			Pol	liimidas planas			Películas, bloques	Ver grafito a partir de poliimidas		
	Grafito sintético			pumas grafíticas ett, Burchell)	Brea / Mesofase (ORNL – Poco graphite). Proceso distinto del espumado por gas- blowing (bajo patente)	•	Espumas grafíticas (las paredes de las celdas son como fibras grafíticas)	Materiales con alta conductividad térmica (3-4 veces la del Cu) y una densidad 4 veces inferior a la del aluminio. Refuerzo de composites.		
l	Granto Sintendo	Grafito monolítico			Coque verde (ver coque)			Sinterización de las partículas verdes (grafito isótropo): Electrodos. Sellos mecánicos. Partes de prensas en caliente.		
		Grafitc	de aut (pro sin	afito isótropo a partir materiales iosinterizables oducido por terización de los ecursores)	Mesofase coalescida o microesferas de mesofase carbonosa 'mesocarbon microbeads' (ver mesofase)	-	Piezas sinterizadas, carbonizadas y grafitizadas	Moldes de fundición. Pistones, electroerosión. Composites con resina: Elementos calefactores; tintas y pinturas conductoras de la electricidad. Escudos electromagnéticos. Composites cerámicos: Filtros; materiales resistentes al calor; cerámicas ligeras. Modificación superficial: Carbón superactivado. Compuestos de intercalación (Li-ión)		
		Co	nos	(yacimientos Ticonderog	ga, Gooderham, Kola)		Cristales cónicos (incorporan pentágonos)	Oriente en frantario en antico		
	Grafito natural Forma alotrópica	Esc	cama	as (plumbago)	Diseminado en cuarcitas y mármoles ricos en sílice	-	Placas	Crisoles refractarios, aceites lubricantes, baterías, recubrimientos conductivos, escobillas eléctricas,		
Ш	гоппа аюпоріса	Cri	stalii	no (vena)	A partir de petróleo		Placas y agujas	pinturas, lapiceros, etc		
Ш		Am	orfo)	A partir de carbón		Partículas granulares			
ш	Mesofase (Fase anisótropa de brea)	de sep	mes	cencia de microesferas sofase carbonosa y ción de la fase a.	Brea de alquitrán de hulla, Brea de petróleo, Brea de naftaleno, Antraceno, Acenaftaleno, PVC	G	Microesferas ('mesocarbon microbeads') Osaka Gas: 1-80 μm	Producción de grafito monolítico isótropo (ver grafito sintético). Producción de carbón superactivado (p.ej. M30 de Osaka Gas) (ver carbón activado). Producción fibras de grado HP (ver fibras de carbono grafitizables).		
li		Bre	ea de	e biomasa	Alquitranes de origen vegetal			Aglomerante para briquetas de finos de carbón o coque		
Ш		Bre	ea de	e alquitrán de hulla	Carbón mineral (hulla)			Matriz de materiales de refuerzo		
l	Brea	Bre	ea de	e petróleo	Fracciones de refino de petróleo - aceite de decantado, alquitrán de pirólisis, gasoil de vacío-	G	Lápices, cilindros y partículas de tamaño variado	granular (ver materiales compuestos C/C); matriz de composites C/C en aplicaciones alta temperatura (l. aeroespacial, aeronáutica); breas ligantes y de		
	2104	Bre	ea si	ntética	Polimerización catalítica de compuestos aromáticos puros: PVC, naftaleno, antraceno, acenaftaleno.	C	Estado líquido	impregnación; precursor de mesofase, fibras de carbono y carbones porosos; frenos; material para ánodo de batería Li-ión en la región 2, electrodos en supercondensadores; refuerzo;		
Ш					Polímeros			ánodos de carbono para industria de Al, siderurgia.		
		ral	Metalúrgico	Siderúrgico	Carbón mineral (hulla)		Coque siderúrgico: partículas de	Siderurgia (combustible, reductor y soporte permeable en el horno alto)		
	Coque	Coque de carbón mineral	Ext	De fundición tracción de carbón miner H ₂). El extracto es el prestente EEUU, 1991)			tamaño 80-20 mm. Coque de fundición: partículas de tamaño superior a 90 mm. Finos de coque: tamaño menor de	Industria de fundición férrea y no férrea. Sector del aislamiento (lana de roca, aislamiento acústico y térmico). Industria química, azucareras, ferroaleaciones. Otros usos: fabricación de electrodos (finos de coque).		
		J	Со	que de brea	Brea de alquitrán de hulla -coque de aguja-		20 mm Aguja	Preparación electrodos de grafito, escobillas (coque aguja).		

١	Producto	Grupo de materiales o		Precursor	G/NG	Forma	Aplicaciones	
	carbonoso	proceso de fabricación		Crudo reducido y	27.10			
			Coque combustible	residuo de vacío (coque verde)			Coque combustible: Cementeras, cerámicas, centrales térmicas, aditivo	
			Coque regular	Corriente de residuo de vacío (coque calcinado)			Coque regular (calcinado): Fabricación ánodos de carbono para industria de aluminio*.	
	Coque	Coque de petróleo	Coque de recarburación	Alimentación muy pura: fracciones pesadas de petróleo (aceites de decantado, fuel oil de pirólisis) sin azufre	G	Aguja (Premium), partículas de distinto tamaño (harina, finas, intermedias y gruesas) Coque verde: tratado a 600°C Coque calcinado: Tratado a 1400°C	(precocidos, Soderberg). Coque de recarburación: Ajuste contenido en carbono del acero, obtención pigmentos. Coque de aguja: Preparación electrodos de grafito, escobillas*. Coque esponja: Industria del Aluminio, producción TiO ₂ . Coque verde: Precursor de grafito isótropo**. Formación de composites con carburos metálicos (también coque calcinado)***. *(ver materiales compuestos de refuerzo granular) **(ver grafito autosinterizable) ***(ver composites de C con carburos metálicos)	
		Codn	Coque de aguja	Fracciones de alta aromaticidad, sin azufre				
			Coque esponja	Residuos parafínicos- nafténicos del petróleo				
		Fibras a partir de brea	Fibras de mesofase de altas prestaciones (grado HP: grafitizadas por tratamiento a T ~3000°C)	Mesofase de brea (ver mesofase)	G	Fibras sueltas cortas o continuas; fieltros tejidos y sin tejer; preformas 3D. Orientación planos grafíticos radial, concéntrico, aleatorio	Refuerzo (relleno) de materiales compuestos (o híbridos). (ver materiales compuestos de refuerzo fibrilar)	
		en	ras de carbono crecidas fase vapor (VGCF - ras Endo).	CH ₄ ó benceno + H ₂ (catalizador = Fe, ferroceno, etc.) a		Método de catalizador fijo: Diámetro=5-7 μm Longitud=1-10 mm	Refuerzo [relleno (conductor)] de materiales compuestos. Supercondensadores y baterías. (ver composites de VGCF).	
	Fibras de carbono grafitizables	Ko:	yama y Endo. oducidas por Applied ences	1100°C. CVD catalítica similar a nanofibras + etapa de engrosamiento	G	Método de catalizador flotante: Diámetro=0.1-1.5 μm Longitud<1 mm	Catalizadores y soportes de catalizadores: SCR, electrocatálisis. Adsorción en fase líquida y gas. Desinfección de aguas (virus, bacterias).	
				Poliaramida (Nomex y Kevlar)			Refuerzo (relleno) de materiales compuestos (o híbridos). (ver materiales compuestos	
		Fib	ras poliméricas	PPP: Poli(p-fenileno) PBO: Poli(p-fenileno benzobisoxazol) PPTA: Poli(p-fenileno tereftalamida)	G	Fibras sueltas cortas o continuas. Fieltros tejidos sin tejer	de refuerzo fibrilar) Precursores de materiales porosos (catalizadores, soportes de catalizadores, etc.) Materiales aislantes y sellantes para industria automoción, aeroespacial, energía nuclear,	
				PBT: Poli(butileno tereftalato)			electrónica, química y petroquímica.	
		<u> </u>		Hibridació	n sp²	2-1		
	Estructuras tipo grafino Forma alotrópica	Gra	afinos ' <i>graphynes</i> ' afidiinos ' <i>graphdiynes</i> ' aughman, 1987)	Estructuras hipotéticas, solo sintetizadas como subestructuras	-	Estructuras 2D moleculares planas (láminas)	_	
	(hibridación sp+sp²)		o] _n {C _m } _{n-1} birov, 2004)	orgánicas (Haley, 2007)		Cristales de C ₆₀ interconectados con cadenas tipo cumuleno		
	Ciclo [n] carbones (Diederich, 1989) Anulenos pere Radialenos. C		ulenos perefinilados. dialenos. Cumulenos. mplejos con metales de nsición, etc.	Catálisis con Pd(0) partiendo de acetileno Intermedios en la formación de C ₆₀	-	Anillos monocíclicos de n carbonos con hibridación sp	Presentan actividad antitumoral	

I	Producto carbonoso	Grupo de materiales o proceso de fabricación	Precursor	G/NG	Forma	Aplicaciones
l			Hibridación	sp		
ı		Naturales: Chaoita	Colisión de meteoritos con grafito natural		Carbón blanco cristalino (más duro que el B ₄ C)	
	Carbinos (Escuela rusa)	Sintéticos: Poliinos (-C=C-C=C-)	Poliinos: Deshidropolicondensación oxidativa de acetileno Cumulenos: a) Policondensación de subóxido de carbono (O=C=C=C=O) con acetiluro de bis(BromoMagnesio) BrMg-C=C-MgBr b) Deshidrohalogenación de PVDC c) Desfluorinación de PTFE	-	Partículas cristalinas y amorfas. Las películas se preparan mediante crecimiento cristalino. Existen dos tipos de cristales: a) Alta densidad: Carbinos α (ρ=2.68 g/cm³) y β	Semiconductores unidimensionales. Precursores de diamante a alta T y P, sin catalizador. Posibilidad de generar filamentos ultra resistentes.
		Sintéticos: Cumulenos (=C=C=C=)	[poli(tetrafluoroetileno)] d) Deshidrogenación de poliacetileno Cristales de Carbinos: a) Vaporización láser de pirografito b) Deposición por vaporización en arco eléctrico de negros de carbono		(ρ=3.13 g/cm³) b) Carbolite: Tipo I (empaquetamiento AB) y II (empaquetamiento ABC) de baja densidad (ρ=1.46 g/cm³)	Material biocompatible, potencial aplicación en implantes

Clasificación de materiales carbonosos porosos

Materiales	Forma, origen, método de si	ntesis	Aplicaciones
Carbón activado	Origen mineral: Carbón mineral (bituminoso [Calgon], lignito [Darco antracita, turba [Norit], etc.), coque petróleo, brea, etc. Origen lignocelulósico: Cáscaras do coco, de arroz, de almendras; hues aceituna, de melocotón; algas; serr madera, lignina (del procesamiento papel), etc.	ap a	Fase líquida (80%): -Agua potable (30%) -Aguas municipales e industriales (22%) -Decolorante de azúcar (12%) -Aguas subterráneas (7%) -Minería (5%) -Usos domésticos (5%) -Comida y bebida (4%) -Productos farmacéuticos (4%) -Procesos químicos y otros (11%) Fase gaseosa (20%): -Purificación de aire (29%) -Recuperación de solventes (25%) -Automóvil (20%) -Filtros de cigarrillos y otros (26%)
	Otros: Negros de humo, Microesfer mesofase carbonosa [MCMB, carbonosa [MCMB, carbonosa [MCMB], carbonosa [MCMB], carbonosa [MCMB], carbonosis as a 3000 m²/g], carbón vítreo (microesferas) azúcar, melaza, hue de animales, polímeros, pre-polímeresiduos (biomasa, plásticos, etc.). (ver materiales carbonosos simp	sos oros, O	Otros: Catálisis Catalizadores y soportes de catalizadores en fase líquida o gas. Electroquímicas Baterías de Li (p.ej. MCMB) Condensadores de doble capa eléctrica (dispositivos redondos o cilíndricos [diámetro=7-13 mm, altura=25 mm] mantenimiento [back-up] de grandes memorias de ordenadores) Adsorción / separación Tamiz molecular (PSA, TSA [ESA]): Separación de O ₂ /N ₂ , CO ₂ /N ₂ , CO ₂ /CH ₄ , etc. Captura de vapores de gasolina en coches (canisters). Almacenamiento de gases (CH ₄ , H ₂)

Materiales		Forma	a, origen, método de sínt	esis	Aplicaciones				
		Fibras ¡ Kevlar,	poliméricas (Nomex y sus re etc.).	chazos,	Las mismas aplicaciones de los carbones activos más aquellas aplicaciones donde la resistencia a la difusión sea elevada. Catálisis:				
			(viscosa). Primeras fibras ac en 1962	ctivadas por	Reducción SCR de NO _x (con o sin metales). Adsorción catalítica de SO ₂ . Electrocatálisis Soporte catalítico (Radovic y Reinoso):				
	sin tejer)	Resina	fenólica, Kynol (Kuraray)		Hidrogenación (de CO y CO ₂ , de alquenos y alquinos, de aromáticos, síntesis de amoniaco) Hidrogenólisis de alcanos. Hidrodesulfuración (HDS) e hidrodesnitrogenación (HDN) de				
	idos y	PAN (T	oho Rayon)		fracciones de petróleo, etc. Electroquímicas:				
Fibras de carbón activadas	fieltros (tej		de brea isótropas ('general p . (Osaka Gas)	ourpose'),	Condensadores de doble capa eléctrica (fieltros de fibras usados en configuración tipo moneda) Adsorción / separación: Adsorción de NO _x por medio de fibras dopadas con Fe.				
	Fibras, telas, fieltros (tejidos y sin tejer)		de carbono crecidas en fase) (ver materiales simples)	vapor	Adsorción de NH ₃ (fibras pretratadas con sales de Mg, Al, Ca, Fe, Zn). Adsorción y recuperación de VOC's. Filtros de cigarrillos. Tamiz molecular (PSA, TSA [ESA]).				
		densida (CBCF)	(ver materiales compuest	•	Almacenamiento de gases. Captura de vapores de gasolina en coches (canisters). Filtrado de aire en equipamientos militares. Separación de C_{60} y C_{70} Otras:				
		compo	osites porosos)		Absorbente de luz, Purificación de aguas (eliminación virus, bacterias)				
Estructuras monolíticas (Burchell, Derbyshire, Kimber,	ono ila, 1989)	nonolitos, as	Tipo de disolvente: acuagel (hidrogel), liogel, alcogel	ivación: oorosidad diente	Las mismas aplicaciones de los carbones activos más aquellas aplicaciones donde la resistencia a la difusión sea elevada. Soporte de catalizadores.				
Gadkaree, Pekala, etc.)	Geles de carbono (Patente EEUU Pekala, 1989)	Geles de carb (Patente EEUU Pek	Geles de cark (Patente EEUU Pek	Geles de carl (Patente EEUU Pek	Geles de cark (Patente EEUU Pek	Morfología variada: monolitos, polvos, películas	Tipo de secado: xerogel (subcrítico); aerogel (supercrítico); criogel (criogénico)	Carbonización / Activación: control meso-, microporosidad de forma independiente	Aislante térmico, acústico. Eliminación contaminantes (biomoléculas, virus, bacterias, iones radioactivos, PCBs, VOCs, As, Boro) Almacenamiento de H ₂ Supercondensadores Electrodos y electrocatalizadores Desionización capacitiva (aguas) Electrooxidación (sistemas avanzados de depuración)
	iono 1, 1960)	Morfología: monolitos, polvos, películas	Técnicas de insuflado en p resinas. Agentes espuman (líquidos bajo punto fusión) (gas formado in-situ), direc inyectado a presión)	tes: físicos), químicos	Aislamiento térmico (industria aeroespacial) Disipación de calor en microprocesadores, parachoques y placas de absorción de impactos (automoción), convertidores catalíticos, soportes catalizadores, prótesis, electrodos para pilas, etc.				
	Espumas de carbono (Patente EEUU: Ford, 1960)	Morfología polvos,	Técnicas de pirólisis: carb (materia volátil del precurso agente espumante)		(ver materiales simples) Electroquímicas: Electrodos Li-ión.				
	Espu (Patente	Monolitos, películas	Infiltración del precursor (p carbón mineral) en espuma poliuretano (técnicas de na	as de	Adsorción / separación: Adsorción de hidrocarburos. Filtro de partículas.				
	Monolit recubie	os tipo 'h rtos de r	micos Recubiertos (Gadka noneycomb' (p.ej. cordierita, esina fenólica o furánica, sa activados.	Corning),	Soportes catalizadores, inmovilización enzimas, Adsorción de gases y vapores (VOCs), etc. (ver materiales compuestos cerámico/carbono)				
		Composites de baja densidad de fibras de carbono activadas, CBCF (Univ. Kentucky, ORNL)		e carbono	Ver materiales compuestos C/C - Composites porosos				
	Monolitos Integrales	Celulares: Un aglomerante carbonoso (resina, etc.) es mezclado con carbón activo antes de la			Catálisis: Catalizadores y soporte de catalizadores. Adsorción: Adsorción de VOC's.				
	Mond	química aglome	densidad: Carbón activo (ad a) o fibras de carbono activa rradas con un ligante (ρ apar (Cazorla, Linares)	das	Filtro de gases. Almacenamiento de gases (monolitos integrales de alta densidad)				
	materia		s' (Tokuda, Okabe, etc): Mad i impregnada con resina fend ictivada.		Catálisis, adsorción de humedad, tratamiento de aguas, etc.				

Materiales		Forma, origen,	método de síntesis		Aplicaciones	
Grafito exfoliado	Ver ma	nteriales simples		de tefló	s (cintas de aislamiento para uniones, como los rollos on), empaquetamiento y aislamiento; térmico a alta atura; limpieza de manchas de petróleo; catálisis	
Grafito intercalado	Con K,	K-H, Cs o Rb		Ver materiales compuestos carbono/metal. Almacenamiento de gases y separación isotópica de hidrógeno		
	brea/ca	s precursores: arbón s resinas	Marshari an Balfarlan	Adsorc		
Tamices moleculares		cas C ₆ H ₆ , C ₂ H ₂) sobre al poroso	Membranas: Películas soportadas en soportes macroporosos (orgánicos o inorgánicos)	Procesos de separación: Membranas tipo tapiz molecular: separación de gases permanentes (O ₂ /N ₂ , CO ₂ /N ₂ , CO ₂ /CH ₄ , etc) Membranas de adsorción selectiva: separación de hidrocarburos (iso-butano / n-butano, aire / hidrocarburos, H ₂ / hidrocarburos, etc) Aplicaciones biológicas		
	Reacción halogenación de carburos metálicos M _x C _y (Gogotsi)			Electro Soporte	enamiento de gases (H ₂ , CH ₄) dos en supercondensadores y baterías ión-Li. es de electrocatalizadores rimientos tribológicos	
	Microporosidad	previamente infil microporosas: Y (Kyotani, 1997)	e un precursor de carbono, trado en zeolitas , ZSM-5, L, β , EMC, carbono: C ₂ H ₂ , C ₃ H ₈ , áridos, PAN, etc.			
Materiales de porosidad controlada (Campo en evolución exponencial)	Mesoporosidad	infiltrado en sílic SBA, HSM, MSL (Knox, 1986; Ry sílice de mesopo partir de silicato adición de catali Ni, Mn, etc.) dura obtener a baja te materiales poros (p.ej. soportes de (Sevilla, 2006). Precursores de sacarosa, resina Carbonización d presencia de nai sílice (Hyeon, 19 'mesocellular foa Carbonización d (Tanaka, 2005) Polimerización d geles de carboi	el precursor de carbono en nopartículas esféricas de 199) usadas como molde ams' e nanocomposites orgánicos le geles orgánicos (ver	Técnicas de nanomoldeo (endo-, exomoldeo) 'nanocasting'	Adsorción moléculas de gran tamaño (biomoléculas, antibióticos, enzima, proteínas). Soportes de catalizadores y electrocatalizadores. Inmovilización de enzimas. Sensores químicos, bioquímicos. Procesos de separación/adsorción de gases. Cápsulas y materiales encapsulados para procesos avanzados de purificación de aguas, catálisis, etc. Electrodos en supercondensadores. Membranas.	
	Macroporosidad	Estructuras tipo (Nakanishi, 2004			Especulativas (preparación de cristales fotónicos)	
	Macrop	Estructuras tipo Cai, 2006)	diatomea		Especulativas. Potencial aplicación en sistemas dinámicos (cinéticas, transporte), adsorción de moléculas de gran tamaño, soportes de catalizadores	

Clasificación de materiales carbonosos compuestos I) CARBONO/CARBONO

Producto			nponente de bono matriz	C	omponente de carbono de relleno	Forma y características	Aplicaciones
		simp	(ver materiales oles). También a en la fase de	les)	Coque de petróleo (relleno más común) Coque de extractos de	Piezas de muy diversas formas y tamaños preparadas por: a) extrusión (grafito anisótropo), moldeo por	Metales y semiconductores: Fabricación de ánodos para producción de aluminio (60%) y electrodos para producción de acero (32%). El 8% restante para el resto de aplicaciones.
Materiales compuestos de refuerzo granular (todos los	Aglomerante	densificación (impregnación). El aglomerante más común es la brea de alquitrán de hulla		(ver materiales simples)		compresión (grafito anisótropo) o compresión isostática (grafito isótropo) b) ciclos de	Crisoles y botes para fundido de metales y epitaxia (semiconductores). Moldes para extrusión de metales. Eléctricas: Escobillas eléctricas. Uniones eléctricas en trenes y tranvías. Elementos calefactores.
aglomerantes se pueden usar con todos los rellenos)	Aglo			ver m	Negros de carbón	carbonización y densificación (impregnación) con	Electrodos en pilas de combustible. Ánodos y cátodos en baterías eléctricas.
				Relleno	Grafito natural	brea c) Grafitización (en ciertos casos)	Mecánicas: Lubricantes. Anillos de sellado. Bocas de cohete. Escudos térmicos.
			na fenólica (ver		Espumas de carbón tipo vidrio (aislante térmico)	-electrografito- Los composites de	Químicas: Reactores. Intercambiadores de calor. Inyectores de vapor. Equipamiento para CVD.
			puestos carbono ímero)		Espumas de brea o mesofase (conductor térmico)	espumas se preparan por impregnación con brea	Nucleares: Moderadores y elementos de control (absorción de neutrones).
	ación		Brea (ver	simples)	Fibras PAN (alta resistencia)	Refuerzo: Fieltro (rayón),	Frenos de aviones (aplicación
Materiales compuestos de refuerzo fibrilar	(e impregnación	no CVI)	materiales simples)		Fibras de mesofase de brea (alto módulo = rigidez)	Fibras cortas [chopped = 'injection molding' (moldeo por	mayoritaria). Piezas estructurales de alta temperatura de vehículos hipersónicos. Conos y escudos térmicos de reentrada de vehículos espaciales (con SiC contra oxidación).
Composites de fibras de carbono de alta densidad (C/C)	Resina fenólica		Refuerzo (ver mat.	Fibras isótropas de brea ('general purpose')	inyección)], Fibras continuas [1,2,3 direccionales = impregnación o	Pistones en motores de combustión interna. Elementos calefactores (hasta 2000°C). Conexiones de electrodos de arco eléctrico. Moldes para	
	CVI	CH₄,	CH ₄ , C ₂ H ₆ , C ₂ H ₂ , C ₃ H ₆		Fibras de rayón	'filament winding' (bobinado)].	arco eléctrico. Moldes para tratamiento de metales (Ti)
Composites porosos	litos integrales		PVC, polivinilmetileter, brea de alquitrán de hulla, resina de		Carbón activo	Monolitos celulares (honeycomb) y discos: preparados por extrusión, curado, carbonización y activación.	Soporte de catalizadores (SCR, electrocatálisis, etc.): Ej. Hidrogenación selectiva de cinamaldehído (Theo Vergunst) Adsorbente (canisters) Filtro de gases (máscaras antigas)
-Monolitos integrales (celulares y de alta densidad)	Monolit	Aglomerante	alcohol polifurfurílico y resina fenólica		Carbón activo (activación química). Fibras de carbono activadas	De alta densidad aparente (0.4-1 g/cm³): cilindros y otras 3D	Almacenamiento de gases (para CH ₄ , capacidad óptima > 150 V/V) (Linares, Cazorla)
-Composites de		Aglc	Brea (ver		Fibras PAN	ODOF:	Alabanta términa Abaanbanta da lua
fibras de carbono de baja densidad			materiales simples)	,	Fibras de rayón Fibras isótropas de brea	CBCF: Monolitos de baja densidad	Aislante térmico. Absorbente de luz. Tamiz molecular (PSA, TSA [ESA]). Adsorción en fase líquida y gaseosa
(CBCF)	CBCF			Fibras	(Carboflex) Fibras de mesofase de brea	preparados vía dispersión en agua o en seco (fibras	(almacenamiento de gases, filtrado de aire en equipamientos militares). Catalizador y soporte de
			Resina termoestable		Fibras de aramida (Nomex y sus rechazos)	Nomex)	catalizador y soporte de catalizadores, etc.
Composites de	Preform.	Alcohol polifurfurílico			VGCF catalizador fijo (ver materiales simples)	Compositos de altra	Catalizador fijo: Sumideros de calor en equipamiento electrónico. Componentes en contacto con plasma
Composites de VGCF (Applied Sciences) [tratados a 3000°C]	Matriz		Brea (ver materiales simples)	Refuerzo	VGCF catalizador flotante (ver materiales simples)	Composites de alta densidad y distinta orientación de fibras (1D, 2D, isótropa)	(fusión). Radiadores. Catalizador flotante: Frenos (composites isótropos que disipan el calor en todas las direcciones). Baterías Li-ión (alta relación superficie / volumen). Refuerzo de componentes del automóvil.
(Doors do'			○ C ₃ H ₆		landar da marat l		For a substitute
'Peapods'	Ful	lerenc	s encapsulados en	el in	terior de nanotubos		Especulativas

II) COMPUESTOS DE INTERCALACIÓN

Preparación:

- a) Sin contacto ('two-bulb')
- b) En contacto (Mezcla con el intercalado sólido, disuelto, fundido, en aleación o en sal fundida). Procesos térmicos, químicos o electroquímicos.

Producto		Componente de carbono	Otro componente			Forma y características	Aplicaciones
Covalentes	Intercalante	Grafito sintético	Intercalador		CF) _n], O(OH) [óxido rafito, C₄O(OH)]	Teflón (PTFE). Rollos de lubricante sólido. Partículas, etc.	Lubricante sólido (teflón) Electrodos de baterías primarias (cátodo = fluoruro de grafito)
					K-THF, Na-THF	Calentamiento rápido para producir deslaminación	Grafito deslaminado o exfoliado (ver materiales simples)
		Grafito		Tipo Donor	K, K-H, Cs, Rb	Adsorbentes	Almacenamiento de gases (H ₂ , hidrocarburos) y separación isotópica de hidrógeno (ver materiales porosos)
				-	Li, K, K-Hg,	Catalizadores	Síntesis orgánica, polimerización de hidrocarburos
	te	Grafito (región 1), brea tratada a baja temperatura (región 2), carbono vítreo (región 3)	ō		Li		
lónicos	Intercalante		Intercalad	H ₂ SO ₄ , Ni(OH) ₂ , Mn(OH) ₂	LiC ₆ (región 1), LiC ₂ (región 2)	Electrodos de baterías secundarias ó baterías Li-ión	
		Grafito		Tipo Aceptor	H ₂ SO ₄ , HNO ₃ , FeCl ₃	Calentamiento rápido para producir deslaminación	Grafito deslaminado o exfoliado (ver materiales simples)
					SbF ₅ , Br ₂ , H ₂ SO ₄ , HNO ₃	Catalizadores	Síntesis orgánica
		Materiales generalmente grafíticos			AsF ₅ , SbF ₅ , HNO ₃ , CuCl ₂ , FeCl ₃ , F ₂ , Br ₂	Materiales fibrosos	Materiales altamente conductores de la electricidad

III) CARBONO/METAL

Producto		Componente de carbono		tro componente	Forma y características	Aplicaciones
Composites de fibras de carbono con matriz metálica	Refuerzo	Fibras grafíticas (brea, VGCF, etc)	Matriz	Cu, Al (Osaka), Ni, Mg (se pueden recubrir las fibras con Ti, B, etc, para protegerlas de la difusión de metal de la matriz en el interior de la fibra)	Generalmente unidireccionales. Fabricación: a) electro-deposición b) Prensado en caliente c) Infiltración del metal fundido	Pistones y otras partes de motores de combustión interna (Osaka). Materiales con alta conductividad térmica y rigidez (Aplicaciones potenciales: dispersión de calor en sistemas nucleares, componentes de cohetes, intercambiadores de calor en vehículos supersónicos, sumideros de calor en sistemas electrónicos empaquetados [ordenadores])
Metalocarbo- hedrenos (Met-cars) (Castleman, 1992)	cilind forma inerte	rización láser de un ro del metal, que a un plasma en un gas e pobre en metano o eno (1%).	Meta Mo, e	les: Ti, V, Zr, Hf, Cr, etc.	I) Estructuras catiónicas (y neutras) con estructura de dodecaedro pentagonal (múltiples celdas conectadas) tipo M ₈ C ₁₂ ⁺	Aplicaciones especulativas

Producto	Componente de carbono	Otro componente	Forma y características	Aplicaciones	
Nano-cápsulas rellenas	Fabricación por arco eléctrico o vaporización láser como los fullerenos (atmósfera He). El electrodo o blanco ('target') de grafito se fabrica con una mezcla de carbono e Ytrio o tierras raras.	Metales: Y, tierras raras	Nanopartículas YC ₂ (30-70 nm). Estructura: capas grafíticas de estructura turbostrática que forman una cápsula que encierra en parte cristales de YC ₂ , y en parte vacío.	Aplicaciones especulativas	
	Carbono poroso generado por métodos de endo- o exo-moldeo.	NiO, Fe _x O _y , Cr ₂ O ₃ , LiCoPO ₄ , CoFe ₂ O ₄ , etc.	Metal encapsulado en el interior de estructuras mesocelulares. Pueden presentar propiedades magnéticas para favorecer la recuperación del material.	Aplicaciones en catálisis, liberación de fármacos, inmovilización de enzimas, purificación de aguas, etc.	
Metalo-	'Endohedral fullerenes' Vaporización láser de electrodo de grafito impregnado con metales	Metales de impregnación: tierras raras, metales de transición, alcalinos (Sc, Y, La, Ce, etc.)	Clústeres con metal encapsulado en el interior del fullereno	Aplicaciones especulativas en medicina terapéutica	
fullerenos	'Exohedral fullerenes'	Metales de impregnación: tierras raras, metales de transición (Sc), alcalinos (Cs), y otros compuestos organometálicos	Clústeres con metal situado en el exterior (enlace)	Potencial aplicación en almacenamiento de H ₂ avalados por resultados de simulación (C ₆₀ [ScH ₂ (H ₂) ₄] ₁₂) [Zhao, 2005]	
0	Coque calcinado (ver materiales simples)	B ₄ C, SiC, TiC, ZrC,	Mezcla de coque (~50 μ m) con el carburo (1-2 μ m). 'Hotpressing' de la mezcla (30 MPa, 2100°C)	Composites resistentes a la oxidación con aire (800°C), con ácido sulfúrico y nítrico, y al ataque de metales fundidos (AI, Cu)	
Composites de carbono con carburos metálicos	Coque verde (ver materiales simples)		Molienda de coque verde y carburo a 1-5 μm. Sinterización a T~1000-2400°C y P atmosférica	Preparación de materiales anti- oxidación y anti-corrosión con grandes tamaños y formas complejas	
	Preformas de fibras de carbono, grafito isótropo	Carburos de Ti, Zr, etc.	Preformas 1D, 2D, 3D	Potencial aplicación en pared primaria reactor de energía nuclear de fusión (proyecto ITER)	
Grafito/metal	Recubrimiento de grafito, carbono pirolítico	Ni, Cu, SnO ₂ , Si, MgO	Láminas, recubrimientos	Baterías primarias; baterías de ión-Li de nueva generación Refractarios	

IV) CARBONO/CERÁMICO

	Producto	Componente de carbono			Otro componente	Forma y características	Aplicaciones	
r f	Cemento reforzado con fibras de carbono (CFRC)	Refuerzo	Fibras de carbono de grado GP (PAN, brea, papel ['mats'])	Matriz	Mortero de grano fino ('thin mortar plate'). Cemento Portland. Cemento de alúmina.	El refuerzo puede ser isótropo (fibras cortadas), 2D, 3D (fibras continuas), o láminas de papel de fibras. Se puede preparar en el sitio de construcción.	Cemento altamente resistente de baja densidad usado en construcción de edificios [alta estabilidad química, atenuante de ruidos, escudo electromagnético (en edificios inteligentes, para proteger el funcionamiento de ordenadores de la radiación exterior)].	
	Monolitos recubiertos cerámico/carb ono				Monolitos recubiertos	Soportes catalizadores, inmovilización enzimas, Adsorción de gases y vapores (VOCs), etc. (ver materiales porosos: estructuras monolíticas)		
re fii c: (C M c: re	Cerámicos reforzados con fibras de carbono (CFRCer)	Refuerzo	Fibras de carbono (PAN, brea), ó nanotubos de carbono	ó nanotubos de É Al₂O₃ atacan la		Composites preparados por CVI. Importante la compatibilidad química de matriz y fibras	Evitan la rotura catastrófica típica de los materiales cerámicos (materiales quebradizos). Aplicaciones potenciales.	
	Materiales carbonosos recubiertos de películas cerámicas	Materiales carbonosos para aplicaciones de alta temperatura (fibras, grafito, carbón vítreo)			$\begin{array}{l} B_2O_3 \\ B_2O_3 + SiO_2 \\ SiC \\ SiC + zircona \\ (ZrSiO_4), SiC + \\ mullita \\ (3Al_2O_32SiO_2) \end{array}$	Preparación: a) CVD b) Impregnación c) 'Dip-coating'	Recubrimientos para potenciar la resistencia química (p.ej. oxidación) del material carbonoso	

V) CARBONO/POLÍMERO

Producto	Componente de carbono		Otro componente		ro componente	Forma y características	Aplicaciones
		Fibras PAN (alta resistencia)	Matriz	Resinas termoestables	Epoxi (Bisfenol A epoxi; TetraGlicidil Metileno DiAnilina [TGMDA])	Composites con distinta orientación de las fibras: continuas (1D, 2D, 3D),	Aeroespacial (~70%): Estructura primaria de aviones (alas, fuselaje, superficies de control, estabilizadores verticales [A310 Airbus, Boeing 777]). Cuerpos de satélites. Brazo de la lanzadera espacial. Cuerpo de paneles solares de satélites. Antenas espaciales y reflectores, etc. Material deportivo (~20%): Raquetas de tenis y bádminton, palos de golf, cañas de pescar, esquíes, partes de veleros. Automóviles: Ejes, ruedas, partes del motor. Industria: Robots, plantas químicas, instrumentación médica, cuchillas rotatorias Electricidad y calor: Disipadores electrostáticos y de calor (VGCF+polietileno) Refuerzo estructural: En láminas pueden ser usados para recubrir (y así reforzar) elementos estructurales deteriorados, como pilares de puentes o vigas.
	Refuerzo (ver materiales simples)	Fibras de mesofase de brea (alto módulo = rigidez)			Fenólica (PF) de catálisis ácida (Novolak + hexamina)		
		Fibras de poliaramida (Kevlar)			Fenólica (PF) de catálisis básica (Resol)		
		Fibras PBO			Poliimidas termoestables (de adición [API = p.ej. Bismaleimidas BMI {poliimida tipo epoxi}] y de condensación [CPI])		
Plásticos reforzados con fibras de carbono					Esteres de cianato	cortadas (isótropos).	
(CFRP)		Fibras de rayón		Resinas termoplásticas	Éteres poliarílicos (PEK, PEEK)	Temperaturas de operación: Epoxis (<150°C), BMI (205-245°C), Poliimidas (260-315°C), PBI (315-370°C)	
		Fibras isótropas de brea			Poliimidas termoplásticas (LARC- TPI; NR-150-B2; Polieterimida; Poliimida 2080; Amida Imida)		
					Sulfuro de Polifenileno (PPS)		
					Polietileno		
		VGCF		Moléculas ordenadas	Nomex, Kevlar (enlaces amida). Polímeros que forman líquidos cristalinos		
					Xydar, Vectra (enlaces éster)		
					Polibencimidazol (PBI)		
Plásticos reforzados con espumas de	Refuerzo	Espumas de carbón tipo vidrio (aislante térmico)	Matriz	Mismos materiales que CFRP		Los composites de espumas se preparan por	Materiales estructurales con aplicaciones
carbón		Espumas de brea o mesofase (conductor térmico)	Me			impregnación	similares a los plásticos reforzados con fibras
Plásticos reforzados con nanotubos	Refuerzo	Nanotubos de carbono	Matriz	Polímeros de tipo polietileno		Láminas flexibles. Estudiados en el Trinity College (Irlanda, 2001)	Trajes espaciales de los astronautas
Nafión / C ₆₀ Fullerenos (C ₆₀) como aditivos de membranas poliméricas conductividad de potones tipo Nafión			nbranas poliméricas de	Membranas	Pilas de combustible de membrana polimérica		
Polímeros / C ₆₀	Fuller	lerenos (C_{60}) funcionalizados con polímeros orgánicos				Estructuras flexibles y ligeras	Diseño de celdas fotovoltaicas híbridas con mayor eficiencia (grupo de investigación de Nazario Martín, 2006)