CIUDEN experiences in CO₂ capture by oxycombustion CIUDEN experiencias en captura de CO₂ por oxicombustón

P. Otero¹, I. Alvarez¹, J.A. Gutierrez^{*1}

¹ Fundacion Ciudad de la Energia, Ciuden, II Avda. Compostilla 24400, Ponferrada, Spain. ^{*} Corresponding author: ja.gutierrez@ciuden.es

Abstract

One of the most relevant European R&D&D initiatives focusing on Carbon Capture Utilization and Storage (CCUS) is the CIUDEN Carbon Capture and Storage Project, which is supported by the Spanish Government through the Fundacion Ciudad de la Energia (CIUDEN). CIUDEN investigates CCUS in es.CO₂ which has three main facilities: Technology Development Centre for CO₂ Capture, the CO2 Transport Experimental Facility and the CO₂ Storage Technology Development Plant.

The Technology Development Centre for CO₂ Capture and the CO2 Transport Experimental Facility, located in Cubillos del Sil (NW Spain), incorporates the world's most advanced equipment for the development of oxycombustion and CO2 transport. Combustion capacities are based on two technologies: pulverized coal (PC) and circulating fluidized bed (CFB). Furthermore, gasification research can be carried out in a Biomass Gasifier (3 MW_{th}). CIUDEN CO₂ Storage Technology Development Plant, based in Hontomin (N Spain), allows carrying out experiments in real scale in saline formations to develop CO₂ storage knowledge.

es.CO₂ will provide a real basis for the design, construction and operation of a future CCUS plants, CO_2 transport and final underground CO_2 storage in a deep saline geological formation.

This paper focuses on first experiences of CIUDEN R&D&D portfolio which includes, among others: OXYCFB300 COMPOSTILLA PROJECT, one of the six projects funded by the European Energy Programme for Recovery (EEPR); FLEXIBURN CFB - Demonstration of flexible high-efficiency CFB combustion technology in air and oxy-modes for CCS; RELCOM - R&D&D activities for reliable full-scale deployment of oxy-PC firing; MACPLUS -Develop and test full-scale prototypes of components to improve performance and reliability of CCS Power Stations; BRISK - integrate networking activities, joint research activities and transnational access to research infrastructures for enhancing biomass utilization.

Keywords: oxycombustion, CCS, CFB, Pulverised Coal.

Resumen

Una de las iniciativas europeas más relevanten en I+D y demostración de la captura, uso y almacenamiento de CO_2 (CCUS) es el projecto de CIUDEN de captura y almacenamiento de carbono, el cual está apoyado por el Gobierno de España a través de la Fundación Ciudad de la Energía (CIUDEN). CIUDEN investiga el CCUS en es.CO₂, que se compone de tres instalaciones: El Centro de Desarrollo de Tecnologías de Captura de CO2, la Instalación Experimental de Transporte de CO₂ y la Planta de

Desarrollo Tecnológico de Almacenamiento de CO₂.

El Centro de Desarrollo de Tecnologías de Captura de CO2 y la Instalación Experimental de Transporte de CO2 están situadas en Cubillos del Sil (NO de España), incorpora el equipamiento más avanzado a nivel mundial para el desarrollo de la captura por oxicombustión y el transporte de CO₂. Las capacidades de combustión están basadas en dos tecnologías: carbón pulverizado (CP) y lecho fluido circulante (LFC). Además, es posible llevar a cabo investigación en gasificación en un Gasificador de Biomasa (3 MW). Planta de Desarrollo Tecnológico de Almacenamiento de CO, de CIUDEN, localizada en Hontomín (N de España), permite llevar a cabo experimentos en escala real en acuíferos salinos para desarrollar conocimiento en alamcenamiento de CO_2 .

es.CO₂ proporcionará una base real para el diseño, construcción y operación de plantas de captura, transporte y almacenamiento geológico de CO2 en acuífero salino profundo.

Este artículo se centra en las primeras experiencias de los proyectos de I+D de4 CIUDEN, que incluyen entre otros: el PROYECTO COMPOSTILLA OXYCFB300, uno de los seis proyectos financiados por el programa Europeo para la Recuperación (EEPR); Energética FLEXIBURN CFB Demostración de la tecnología de oxicombustión en LFC en modo aire y oxicombustión; RELCOM actividades de I+D+D sobre oxicombustión en calderas CP; MACPLUS - desarrollo de prototipos a gran escala de componentes para mejorar el rendimiento y la fiabilidad de las centrales de captura de CO₂; BRISK - actividades de trabajo en red, actividades de investigación conjunta y acceso transnaciona a infraestructuras de investigación.

Palabras clave: oxycombustión, CAC, LFC, carbón pulverizado.

1. Introduction

 CO_2 concentration to the atmosphere has risen faster than ever in the last century. This is highly due to fossil fuel combustion which is the major anthropogenic CO_2 source. The CCS Roadmap highlighted the significance that will need to be attached to CCS (Carbon Capture and Storage) in achieving an atmospheric CO_2 concentration stabilization of 450 ppm in 2050 [1].

The EU has adopted ambitious targets for reducing the emissions of greenhouse gases in the coming decades. The targets for 2020 are:

- 1. to reduce greenhouse gas emissions by 20%;
- 2. to ensure 20% of renewable energy sources in the EU energy mix;
- 3. to reduce EU global primary energy use by 20% by 2020.

In particular, to reduce CO_2 emissions the EU member states will promote the commercial use of technologies for CO_2 capture, transport and storage through demonstration at industrial scale, including whole system efficiency and advanced research as included in the European Energy Roadmap 2050. Therefore, the EU plans are to set up a network of CCS demonstration plants on the short-term to test their viability, with the aim of commercial scale up of CCS technologies on the mid-term.

CCS consists of four major parts: capture, compression, transport and storage of CO_2 . There are three main routes to capturing CO_2 from power processes: pre-combustion, oxy-fuel combustion and post-combustion.

Fundacion Ciudad de la Energia (CIUDEN) $esCO_2$ centre is divided in two main facilities: Technology Development Centre for CO_2 Capture and the Technology Development Plant for CO_2 Geological Storage.

CIUDEN Technology Development Plant for CO₂ Geological Storage, situated in Hontomin (N Spain), allows carrying out experiments in real scale in saline formations to develop CO₂ storage knowledge.

The Technology Development Centre for CO_2 Capture is a flexible, modular and integrated installation ready to test and validate any CCS technology (either CO_2 or O_2 and H_2) under a wide range of conditions in controlled industrial environment. Aerial view of the centre can be seen in figure 1.

2. CIUDEN CO, capture and transport programme

CIUDEN is a state owned, public R&D institution created by the Spanish Government in 2006. It was conceived to foster economic and social development in El Bierzo Region, through activities related to the energy and environmental sectors.

The es.CO₂ Technology Development Centre for CO_2 Capture is located in Cubillos del Sil (Leon, Spain). It aims to develop CO_2 capture and transport technologies feasibility to reach the industrial scale. It is a industrial size facility for experimental purposes, which includes the following systems:

- Fuel Preparation System
- Pulverized Coal Boiler 20MW_{th} (PC)
- Circulating Fluidized Bed Boiler 30MW_{th} (CFB)
- Flue Gas Cleaning System
- Oxidant preparation system
- CO₂ Compression and Purification Unit (CPU)
- CO₂ Transport Test rig
- Biomass Gasifier 3MW_{th}

The main systems and novelty equipments and advances will be described very briefly in this section.

2.1 PC Boiler

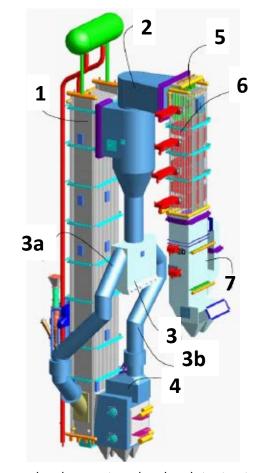
The Pulverized Coal Boiler is a 20MW_{th} unit focused on research demonstration and technological development. It can operate in air and oxy mode for different types of fuels (anthracite, bituminous, sub-bituminous, petcoke/anthracite mixture). It is a vertical water tube boiler with natural water circulation and balanced draft, equipped with different burners configurations.

2.2 CFB Boiler

The Circulating Fluidized Bed Boiler $(30MW_{th})$ is a natural circulation, balanced draft, circulating fluidized bed boiler, designed to test CFB combustion under air and oxy-combustion conditions.

Design fuel is anthracite, but it is able to burn bituminous coal, sub-bituminous coal, pet coke, biomass and its blends, etc.

The oxidant stream required for oxy-combustion is obtained from mixing oxygen with recirculation gas in order to temper combustion. The O_2 concentration design parameters in the oxidant streams vary from 30% to 70%. The scheme of the boiler can be seen in figure 2.


2.3 Flue gas cleaning System and Oxidant Preparation System

Coal and biomass combustion and oxy-combustion produces particulate matter and gaseous contaminants which need to be treated.

Figure 1. Aerial view of CIUDEN's Technology Development Centre for CO₂ Capture **Figura 1**. Vista aérea del Centro de Desarrollo de Tecnologías de Captura de CO₂ de CIUDEN

nº35 / Marzo 2015

The flue gas cleaning system is aimed to treat flue gases emissions from the boilers to meet environmental legislative requirements and to reduce impurities to the maximum levels that can be treated at the CO_2 Compression and Purification Unit (CPU). The system includes the following main equipment: Cyclones, Selective catalytic reduction of NO_x (SCR) and Bag filter.

2.4 Capture and Purification Unit (CPU)

As result of the oxy-combustion process a flue gas highly concentrated in CO_2 is produced almost ready for transport and storage; nevertheless some contaminants need to be removed. Main contaminants form oxy-combustion for transport and storage are: water, O_2 , NO_x , SO_x and particulates.

The Compression and Purification Unit (CPU) is aimed to treat oxy-combustion flue gases remaining impurities, which have not been removed at the Flue Gas Cleaning System, to get CO_2 ready for transport and storage.

Figure 3. CPU general view Figura 3. Vista general de la CPU

- (1) Combustion chamber
- (2) Solid separator
- (3) Ash sealing-direction device
- (3a) Ash duct to the furnace
- (3b) Ash duct to the cooler
- (4) Furnace cooler INTREX™
- (5) Heat recovery zone
- (6) Steam cooled walls
- (7) Economizer

Figure 2. CFB boiler Figura 2. Caldera LFC

2.5 CO, Transport Experimental Facility

Once CO_2 is captured, it needs to be transported to the geological storage site. One of the most suitable ways, from a technical and economical point of view, to transport high quantities of CO_2 , is doing it by pipeline. The transport is usually performed in dense or supercritical phase.

The CO₂ Transport Experimental Facility at CIUDEN es.CO₂ is a first-of-its-kind facility aimed to test CO_2 behavior in transport by pipelines.

The core of the facility consists on ten coiled pipe racks, with a length of 300 m each (total length of 3,000 m) and 2" diameter, which simulates a pressure drop of 150 km of ducts, what is the distance between two pump stations. Between these racks, there are six experimental areas: Depressurization, Leakage, Fracture, Corrosion, Instrumentation testing and Pressure Drop.

Figure 4. CO₂ Transport Experimental Facility at CIUDEN general view

Figura 4. Vista general de la instalación experimental de transporte de CO_2 de CIUDEN

2.6 Biomass gasifier (3 MWt)

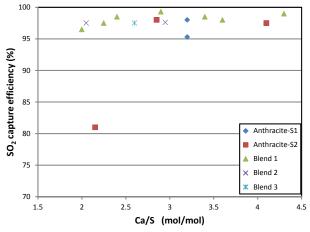
CIUDEN's es.CO₂ Bubbling Bed Biomass Gasifier is an industrial scale facility that can achieve a gross power of 3 MW_{th} . It is aimed to test biomass gasification and coal – biomass co-gasification by bubbling bed and atmospheric pressure gasifier.

Simplified process diagram of the full centre can be seen in figure 5.

3. Main results at CIUDEN Technology

Development Centre for CO2 Capture Circulating Fluidized Bed Boiler

Several testing campaigns have been carried out at CIUDEN's 30 MW_{th} Circulating Fluidized Bed (CFB) boiler using local anthracite and different anthracite/petcoke blends as fuel, in order to explore the capabilities of this technology. Two of the main parameters in which the testing has been focused are the performance on SO₂ capture and NO_x emissions using oxy-combustion technology.


3.1 Sulphur Retention in 30 MWth Oxy-CFB Burning Spanish Anthracite

A set of the testing campaigns has been carried out in CIUDEN's Technological Development Centre, es.CO₂ one of them was the FP7 project FLEXI BURN CFB. The objective was to generate a technical evaluation of the flexible air/oxygen operation to establish high efficiency CFB design requirements.

The experimental runs have been carried out in a 30 MW_{th} CFB boiler, designed by Foster Wheeler Energia Oy, using local Spanish anthracite, three different ratios of anthracite/petcoke blends and one anthracite/biomass blend as fuel. Also two limestone types have been tested as sulfur sorbent.

The experimental period was divided in four sessions, resulting in more than 1,500 operational hours, both in air and oxy firing modes. The main parameters that have been studied are fuel and limestone performance at different bed temperatures and pressures, oxygen excess in flue gas, fluidization conditions, oxidants distribution as well as fly ash recirculation.

Preliminary results show that high SO_2 capture efficiency can be achieved by using limestone infurnace sulfur capture in oxy fuel mode. In chart 1 it can be seen that SO_2 capture efficiency exceeding 95 % has been reached even with Blend 3 containing 5 % of sulfur (d.a.f).

Figure 6. SO₂ capture efficiency for different fuels at high load [2] **Figura 6.**Eficiencia de la captura de SO₂ para diferentes combustibles a alta carga [2]

3.2 NO_x emissions in 30 MWth Oxy-CFB burning Spanish Anthracite

During coal combustion, nitrogen oxides (NO_x) are generated, although CFB technology inherently

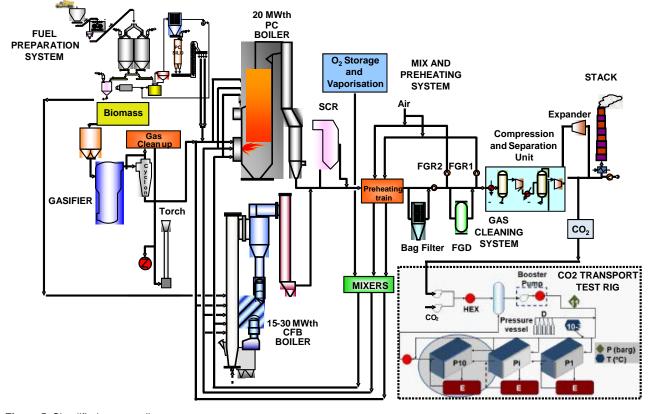
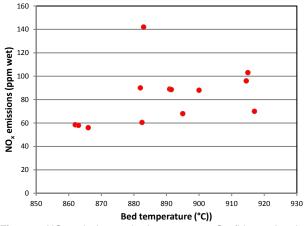


Figure 5. Simplified process diagram

Figura 5. Diagrama de proceso simplificado

produces lower NO_x emissions due to low combustion temperatures than Pulverized Coal boilers. This assessment is well known and it is described in technical literature as one of the main advantage of using CFB boilers.


CIUDEN has carried out tests and analysis in the test programs within different R&D projects:

- OXYCFB300, The Compostilla Project Technology development for CO₂ oxy-capture, inland transport and storage in saline formations supporting Final Investment Decision of a demo 300 MW₂ (aprox.) CCS oxy-CFB Power Station.
- FLEXIBURN CFB Demonstration of flexible high efficiency CFB combustion technology in air and oxy-modes for CCS.
- MACPLUS Development and testing fullscale prototypes of components to improve performance and reliability of CCS Power Stations.

In some of these tests ammonia was injected through nozzles at different points of the boiler for NO_x reduction. The cyclone provides proper gas mixing, residence time and reaction temperature for ammonia to reduce NO_x emissions effectively. The ammonia injection tests were conducted in flow steps in the reagent feeding, and the unreacted NH₃ (ammonia slip) was measured in duct using a FTIR analyzer.

Several parameters were modified during the tests to analyze their influence on NO_x emissions: fuel, air/ oxy firing, bed temperature, oxidant ratio, O₂ content in oxidants, limestone ratio, fly ash recirculation and ammonia feeding.

The results show that NO_x emission levels are significantly lower in CFB oxy-combustion and can be reduced even more using ammonia feeding in the cyclone, where temperature conditions are suitable for Selective Non Catalytic Reduction (SNCR). Chart 2 shows an example of the NO_x emission relation with temperature in oxy firing of anthracite/petcoke (70/30 w-%) blend.

Figure 7. NO_x emissions vs bed temperature. Oxyfiring anthracite/ petcoke (70/30 %w) [3]

Figura 7. Emisiones de NO_x vs temperatura de lecho. Oxicombustión antracita/petcoke (70/30 %w) [3]

4. Conclusions

CIUDEN investigates CCUS in two main facilities: Carbon Capture and Transport at the Technology Development Centre for CO_2 Capture (es. CO_2) and CO_2 Storage at the CO_2 Storage Technology Development Plant. These two main installations have provided a real basis for the design, construction and operation of a future 300 MW_e CFB supercritical oxycombustion plant, with dense phase CO₂ transport line and final underground CO₂ storage in a deep saline geological formation. CIUDEN facilities are conceived not only for the development of CCUS technologies, but also for the improvement of technologies related with co-combustion of coal and biomass that can result in negative CO₂ emissions.

An important milestone is that, CIUDEN is the only project in the world which has completed the process from fuel preparation to CO_2 capture using a circulating fluidized bed boiler in oxy-combustion. Furthermore, CIUDEN has proven and validated the power capacity enlarge from 15 MW_{th} to 30 MW_{th} though the increase of O₂ concentration in the oxidants in oxycombustion.

Based on the experience, no dramatic changes in the boiler between the air-fired and the oxy-fuel modes transitions could be observed. The clearest differences between the combustion modes, in addition to differences between the oxidant and flue gas compositions, were related to emissions. It was found out that both SO₂ and NO_x emissions have the same order of magnitude when the concentrations are considered, but as the flue gas emitted in air mode is approximately four times higher, the total SO₂ and NO_x emission are lower in oxycombustion mode.

Related to SO₂ capture, oxy mode shows high SO₂ capture efficiency, above of 95 % in most cases, and it is highly dependent of bed temperature and Ca/S ratio. Regarding NO_x emission, at the combustion temperatures tested, are due to the nitrogen content of the fuel, although high limestone addition increases the NO_x emissions.

Acknowledgements

The research leading to these results has received funding from the European Commission throguth the Seventh Framework Programme (FP7/2007-2013) and the European Energy Recovery Plan. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

References

^[1] International Energy Agency, World Energy Outlook, 2009

^[2] Muñoz F., Ramos J., Fernández A, Diego R., Kuivalainen R., Petra P. Sulphur Retention in CFB Oxy-Combustion Burning Local Spanish Fuel CIUDEN's Experience. OCC3 conference, 2013, 9-12 sept.

^[3] Ramos J., Navarrete B., Muñoz F., Gil B., Otero P., Kuivalainen R., Hiltunen T., NOx Emissions Experiences in a 30 MWth Circulating Fluidized Bed Boiler under Oxycombustion Conditions. OCC3 conference, 2013, 9-12 sept.