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LSRE-LCM, Laboratory of Separation and Reaction 
Engineering – Laboratory of Catalysis and Materials, is 
an R&D Unit leader in Chemical Engineering research, 
focusing on separation, reaction engineering, 
environmental technologies, catalysis, and materials 
science. LSRE-LCM's main headquarters is at the 
Department of Chemical Engineering of FEUP - 
Faculdade de Engenharia da Universidade do Porto, 
Porto - Portugal, with an external branch - the IPL 
branch at Instituto Politécnico de Leiria. The LSRE-
LCM team consists of nearly,160 persons, including 
permanent professors and researchers, post-doctoral 
researchers, PhD students, project researchers, 
administrative staff, and visiting researchers.
The designation of LSRE-LCM R&D Unit was 
adopted in 2013 from the merger of the two research 
units: LSRE - Laboratory of Separation and Reaction 
Engineering, led by Professor Alírio Rodrigues; and 
the LCM - Laboratory of Catalysis and Materials, led 
by Professor José Luís Figueiredo, that started the 
partnership in 2002 and in 2004 awarded the status 
of Associated Laboratory LSRE-LCM. 
More recently, in 2021, the LSRE-LCM R&D Unit 
in articulation with two more R&D Units based at 
the Department of Chemical Engineering at FEUP 
(LEPABE - Laboratory for Process Engineering, 
Environment, Biotechnology and Energy; and, 
CEFT - Centro de Estudos de de Fenómenos 
de Transporte, stands for Transport Phenomena 
Research Center in Portuguese) created the 
Associate Laboratory in Chemical Engineering – 
ALiCE, the largest Portuguese Associate Laboratory 
in the area of Chemical Engineering, with more than 
450 researchers, 40 % of which with PhD, who over 
the past 20 years have contributed to consolidate 
a relevant international position in the Chemical 
Engineering field at the University of Porto (top-1, 
20 and 100 at national, European and World level, 
respectively, according to well-known and different 
rankings).
LSRE-LCM R&D Unit is organised into five research 
groups (RG): RG1 - Cyclic Adsorption/Reaction 
Processes; RG2 - Product Engineering; RG3 - 
Environmental Engineering; RG4 - Carbon Materials, 
Catalysis and Environmental Assessment; RG5 
- Photo-Electro-Chemistry and Nature-Inspired 
Systems. LCM includes mainly RG4 and RG5. 
Both groups work in the intersection of the fields 
of Catalysis and Carbon (as LCM – Laboratory of 
Catalysis and Materials in the past), extended to 
adjacent scientific domains that include three major 
research areas: Nanostructured Carbon Materials, 

Environmental Catalysis and Technologies, Energy, 
Fuels and Chemicals.

Nanostructured Carbon Materials
Nanostructured Carbon Materials is a transversal area 
of research in the LCM working on the development 
of carbon materials (nanotubes/nanofibers, graphene 
derivatives, graphitic carbon nitride, carbon dots, 
carbon gels, ordered mesoporous carbons, graphene 
derived, among others) with tuned textural and 
surface chemical properties. The tuning of textural 
properties and surface chemistry of carbon materials 
is a major research area of LCM, allowing these 
functionalized materials to be used as catalysts, 
adsorbents, material in membranes, supercapacitors, 
sensors, functional textiles, and biomedical devices. 
The team has a lengthy background in the modification 
of textural properties and surface chemistry of carbon 
materials [1-3]. Functional groups containing O, N, S, 
B or P (Figure 1) can be incorporated on the surface 
of carbon materials [4] either by in-situ doping during 
synthesis [5, 6], or by post-doping in the presence of 
heteroatom-precursors [7-9]. Current developments 
focus on solvent-free methodologies using ball-milling 
mechanical treatments and thermal treatments to 
incorporate different heteroatoms (N, S, P, and B) 
[9-13]. The LCM is actively involved in synthesising 
biomass-derived carbon materials [13,14] and 
producing carbon nanotubes from simulated and 
solid plastic waste precursors [15]. 
José Luís Figueiredo (former LCM leader) and 
Fernando Pereira (LCM leader) co-authored the 
development of a reliable method for quantification 
and identification of oxygenated functionalities on 
carbons, providing a major asset to correlate the 
catalytic properties of the carbon materials with their 
surface chemistry. The technique was in the paper 
Modification of the surface chemistry of activated 
carbons [16], in Carbon journal in 1999. At the time, 
the article presented a novel method for quantitatively 
analysing the oxygenated groups on the surface 
of carbon materials released under heating during 
temperature-programmed desorption (TPD). The 
work has been used around the world by several 
researchers working on the subject (~2800 citations 
-Scopus, Feb.25) and, more recently, the basic 
principles required to perform an adequate analysis, 
allowing the correct assessment (qualitatively and 
quantitatively) of the oxygenated groups on the 
surface of carbon materials were revised and a set 
of “best practices” for the TPD analysis of carbon 
materials, in general, was established [17].
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Figure 1. Oxygen, nitrogen and sulphur surface groups incorporated on carbon materials and techniques for 
their identification/quantification (reprinted from [33]).

Carbon materials can act as supports for several 
active and stable mono and bimetallic catalysts, 
incorporating different metal active centres on 
adequate carbon supports or hybrid materials [18, 
19]. However, carbon materials can also function as 
catalysts on their own. Novel metal-free catalysts 
include acidic carbon xerogels/nanotubes for acid 
reactions like esterification of acetic acid [20], 
hydrolysis of cellulose and hemicelluloses, and the 
production of acetins via transesterification [21]. 
In addition, heteroatom-doped carbon nanotubes 
have been employed for the oxidation of organic 
compounds [12, 22].
Besides catalytic and adsorption applications, carbon 
materials have been investigated under the groups in 
the development of functional textiles. Photosensitive 
nanoparticles, led by titanium dioxide (TiO2) were 
investigated in cotton textile cleaning, replacing 
harsh industrial bleaching methods [23]. Graphitic 
carbon nitride, a metal-free photocatalyst, introduces 
eco-friendly self-cleaning and antimicrobial qualities 
through budget-friendly LED setups in textiles 
[24]. Innovative clothing designs achieving over 
30 dB shielding effectiveness for electromagnetic 
interference were developed using carbon nanotubes, 
TiO2, Fe2O3, and PEDOT:PSS [25]. Textiles coated 
with 70 wt.% Bi2O3 dispersed in a polymeric matrix 
surpassed heavy lead-based solutions in flexibility 
and efficacy for high-frequency radiation protection.

Environmental Catalysis and Technologies
The LCM has given special effort to design innovative 
solutions and methods for environmental protection 
technologies. Research is being carried out for water 
characterization, treatment, and desalination, as 

well as removing pollutants from gaseous and liquid 
effluents. The design of carbon-based catalysts for 
the oxidation of organic compounds in water by 
different advanced oxidation processes (AOPs) is 
a consolidated research area within the groups; 
materials are applied in catalytic ozonation [26-28], 
catalytic wet (air/peroxide) oxidation [22, 29, 30], 
persulphate activation [31], and photocatalysis [32-
34]. 
For the reduction of inorganic compounds, the team 
has consolidated work on catalytic reduction of 
different oxyanions in water (such as NO3-, BrO3- and 
ClO4-) [35-37], allowing them to be converted into 
less toxic species and avoiding the use of “trapping” 
technologies. Carbon materials [18, 38] and metal 
oxides [39] (such as TiO2, Al2O3, ZrO2, CeO, and ZnO, 
among others) were used as support for the active 
metal phase in an attempt to synthesize more stable 
and active catalysts for the reduction of inorganic 
ions. In this context, several combinations of noble/
promoter metals, as well as their rearrangement on 
the surface of the catalyst (in alloy form or not), were 
studied to achieve efficient conversion and selectivity 
in the catalytic process. Different strategies were 
established to support mono [40] and bimetallic [18] 
catalysts in macrostructured monoliths, which were 
then applied for the continuous catalytic reduction 
of inorganic ions. Integrated technologies for 
oxidation and reduction of pollutants in water have 
been studied to improve the efficiency of water and 
wastewater treatment [41], resulting in a Provisional 
Patent Application PT 118885 (Figure 2). These 
methodologies were recently extended for the 
degradation of per- and polyfluoroalkyl substances 
(PFAS), also known as the Forever Chemicals [42].
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Concerning air pollution abatement, efficient metal 
oxide catalysts for the total oxidation of volatile organic 
compounds (VOCs) and carbon-based catalysts for 
NO reduction were developed. The team developed 
a cryptomelane-type manganese oxide synthesized 
by a novel solvent-free technique [22], and current 
research on VOCs abatement researcher is being 
made on the immobilization of powder catalysts on 
structured supports, like monoliths, to overcome the 
limitations of the use of powder catalysts [43]. In 
the selective catalytic reduction of NOx with carbon 
(SCR-C), different carbon materials (activated 
carbon, carbon nanotubes and carbon xerogel) 
functionalized with controlled physicochemical 
properties (texture and surface chemistry), as well as 
structured catalysts, have been investigated [44]. 
In the field of water characterization, relevant 
advances were made in the environmental 
monitoring and risk assessment with several solid-
phase extraction and liquid chromatography-tandem 
mass spectrometry (SPE-LC-MS/MS) methods 
being developed and optimized for the determination 
of more than 50 organic micropollutants in surface 
and wastewater matrices [45]. A new research topic 
on enantioselective analytical tools was started 
associated with an ERC granted to Ana Rita Ribeiro 
[46].
The increasing abundance and dispersion of 
microplastic particles (MPPs) in the environment 
and a better understanding of the resulting impacts 
have also been the focus of the LCM work, with some 
studies being carried out on the aging of MPPs under 
urban environment stressors and identifying the 
subsequent changes in their chemical structure [47]. 
Additionally, decontamination processes targeting 
microplastics and other water pollutants, such as 

adsorption, biocatalysis, and bioremediation, are 
being carried out [48].
The team employs comparative analysis of 
advanced wastewater treatment processes [49], 
identifying areas for improvement and assessing 
the environmental impacts associated with various 
oxidants used in decontamination procedures by 
the Life Cycle Assessment (LCA) methodology. 
Moreover, the LCA studies have been extended to 
the environmental performance of other technologies 
and products, such as packaging.

Energy, Fuels and Chemicals
This thematic area is focused on the development of 
new catalysts and technologies for the sustainable 
production of energy, fuels and chemicals, including 
photocatalysts for solar fuels and chemicals; 
electrocatalysts and carbon electrodes for energy 
conversion and storage; nanostructured catalysts for 
biomass conversion; and CO2 utilization.
Photocatalytic technologies, including novel catalysts 
and innovative photoreactors, are being investigated: 
to produce renewable and sustainable hydrogen by 
visible-driven water splitting [50]; to the selective 
synthesis of aromatic aldehydes and imines [51]; 
to ammonia synthesis from water and nitrogen [52]; 
H2O2 production [53]. 
The team has been working on the continuous 
optimization of catalyst design, seeking effective 
yet less expensive electrochemical solutions for 
energy production and storage. From metal-free 
O-rich-carbon nanotubes [54, 55], to glucose-derived 
carbon materials [13], to their hybrids [56, 57], from 
cobalt and/or iron phthalocyanines  [58-59] on CNTs, 
to the engineering of single atom Fe-N sites onto 
hollow carbon spheres [60] and carbon black [61], 
several materials have been deepen investigated in 
the oxygen reduction and evolution reactions with the 
support of the use of computational tools seeking for 
a better understanding of the processes/reactions 
involved. 
Hierarchical carbons with different boron contents 
[62], glucose-derived carbons modified by 
introducing heteroatoms (O, P) and/or incorporating 
carbon nanotubes (CNTs) during the synthesis/
activation procedure demonstrated promising 
results as supercapacitors [9, 56, 63]. The use of 
low-cost biomass-based materials (such as cork-
based activated carbons) from eco-sustainable 
supercapacitors has been investigated. Carbon-
based materials for flexible supercapacitors and 
wearable electronic gadgets have appeared as an 
interesting application [64], with some work being 
conducted in the lab. 
The catalytic valorisation of biomass wastes into 
valuable chemicals is a promising technology that 
can link traditional refineries and renewable sources. 
At LCM, various carbon-supported noble (Ru-W-
CNTs [65]) and low-cost metal catalysts (Ni-W 
bimetallic catalysts supported on glucose/carbon 
nanotube hybrid carbons [66]) have been developed 

Figure 2
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The catalytic valorisation of biomass wastes into 
valuable chemicals is a promising technology that 
can link traditional refineries and renewable sources. 
At LCM, various carbon-supported noble (Ru-W-
CNTs [65]) and low-cost metal catalysts (Ni-W 
bimetallic catalysts supported on glucose/carbon 
nanotube hybrid carbons [66]) have been developed 
that achieve notable yields of sorbitol and ethylene 
glycol from the direct catalytic valorization of agro-
forestry and urban biomass residues (among the best 
obtained for the catalytic conversion of lignocellulosic 
biomass by an environmentally friendly process). The 
team is now unlocking the value of food waste (coffee 
grounds, orange and banana peels) as feedstock for 
sustainable production of ethylene glycol over low-
cost Ni–W catalysts supported on glucose-derived 
carbons [67]. Still, in the field of biomass valorization, 
the team has worked in different tandem reactions 
using a green solvent (water) to obtain added-value 
products such as gluconic acid, sorbitol, xylitol, 
ethylene glycol, among others, using carbon-based 
catalysts obtained by hydrothermal carbonization of 
biomass-derived glucose [68]. The first steps towards 
the conversion of lignocellulosic biomass and bio-oils 
to aviation fuels and chemicals are already being 
taken [69]. Moreover, Co-Mo/CNT catalyst allowed to 
convert waste cooking oil into linear (and branched 
hydrocarbons in the aviation fuel range, while Ni-Mo/
CNTox provided a higher selectivity in the green 

diesel hydrocarbons range [71].
The team has also been working on the development 
of technologies to transform excess CO2 into valuable 
chemicals and fuels to protect the environment and 
reduce dependence on fossil fuels. Two front lines 
are under study: (i) utilization of CO2 in the generation 
of C1 products, and (ii) hydrogenation of CO2 to 
C2+ products (Figure 3). In the first, functionalized 
activated carbon (AC) and carbon nanotubes (CNTs) 
demonstrated to be high-performing supports for 
Ni-based CO2 methanation catalysts, while the 
formation of a composite of AC and CeO2 showed 
excellent performance in this application, with some 
property-performance relationships and reaction 
mechanisms being established by ex-situ and in-
situ characterization [72]. For CO2 hydrogenation to 
methanol and the reverse water-gas shift reaction, 
good performances were obtained using Cu-based 
catalysts supported on pristine CNTs and composites 
of pristine and functionalized CNTs : ZnO [73]. In the 
CO2 hydrogenation to hydrocarbons through Fisher-
Tropsch reactions, multimetallic catalysts (Fe, Co, 
K, Na) supported on carbon and aluminium oxide 
materials have been investigated, with the preliminary 
work showing that CNTs and Al2O3 are suitable 
catalytic supports for the reaction. Concerning the 
metallic phase, Na-containing catalysts promote the 
highest CO2 conversion, whereas Fe catalysts have 
the highest selectivity in the C2-C4 products [74].

All these activities and discoveries are only possible 
due to the available facilities and collaborations of 
LCM (Figure 4). The lab is fully equipped to support 
advanced materials synthesis, modification, and 
characterizations. For synthesis, facilities include 
glass/quartz reactors; high-temperature ovens with 
controlled heating and atmospheres (inert, oxidant, 
reductive); high-pressure/vessel-pressure reactors; 
ultrasonic processors; microwaves, as well as 

several techniques for materials immobilization on 
macrostructured supports (dip-coating, spin-coater, 
viscosimeter). In-house, the materials characterisation 
can be assessed by N2 adsorption-desorption 
isotherms; thermogravimetry analyses; temperature 
programmed desorption/oxidation/reduction (TPD/
TPO/TPR), TPD of ammonia and CO2, elemental 
analysis (CHNS/O); electrical conductivity (4-point-
probe); contact angles; atomic absorption; and 

Figure 3
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several spectroscopies: Fourier transform infrared 
spectroscopy (FTIR), spectrofluorimetry; Raman; 
UV-Vis spectroscopy; and inductively coupled plasma 
atomic emission spectroscopy (ICP).
To evaluate the material's performances under 
catalytic and other applications, versatile in-house 
made/adapted reactor installations are available, 
as well as some commercial options of batch and 
continuous high-pressure/temperature reactors, 
some with coupled analytical techniques. Analytic 
facilities are available for liquids and gases samples, 
including: high liquid chromatography – HPLC; liquid 
chromatography–mass spectrometry – LC-MS; gas 
chromatography - GC; gas chromatography-mass 
spectrometry – GC-MS; ion Chromatography – IC; total 
organic carbon – TOC; spectrophotometry of liquids; 
NOx Analyser; CO/CO2 Analyser.  Electrochemical 

workstations (potentiostat/galvanostat) are also 
available for the electrochemical assessment of 
materials with different cell configurations (two 
electrodes, three electrodes, half-cells).
Over the years, LCM accumulated collaborations with 
researchers from other R&I units around the world. It 
has participated in consortia for EU and transatlantic 
project funding, and it is part of collaborative 
laboratory networks, namely BIOREF -  focused on 
R&I activities for advanced biorefineries. LCM is 
making a great effort to actively contribute to training 
high-level researchers and professionals through 
post-graduate and post-doctoral programs aligned 
with sustainable and scalable solutions for global 
energy and environmental challenges. For further 
information, we invite readers to visit our website at 
lsre-lcm.fe.up.pt.
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