
S. Dominguez Domínguez
Supervisors: D. Cazorla Amorós and A. Berenguer Murcia (University of Alicante).

Objectives and novelty
The object of the presented PhD Thesis is, on the one hand the development of catalytic systems based on metallic nanoparticles supported on a broad variety of supports, including nanostructured materials, which present good catalytic properties both in terms of activity and selectivity. With the aim to design new catalysts the synthetic procedures for both nanoparticles and nanostructured materials will be integrated to give rise to a new family of catalysts. These will be employed in a selective hydrogenation reaction in order to determine their catalytic behavior. The second objective of this PhD Thesis is to synthesize thin zeolite films on carbon materials for their use in the separation of gases with similar sizes for processes such as air or hydrogen purification. From 2000, the Carbon Materials and Environment research group (CME) of the Inorganic Chemistry Department at the University of Alicante has carried out an intensive study on the synthesis of zeolite membranes and the application of nanoparticles in catalysis.

As with the objectives, the novelty of this PhD Thesis is twofold: first, the combined synthesis of a nanostructured material in the presence of metallic nanoparticles yielded a new series of materials which are synthesized by a simple one-pot route. These new composites have been successfully applied in selective hydrogenations with outstanding results. Secondly, the development of carbon-supported zeolite membranes using the seeding procedure known as electrophoretic deposition employing colloidal suspensions of nanocrystalline zeolite seeds as an electrode in an electrophoresis process, we have managed to deposit a coating of colloidal zeolite crystals on the carbon starting material, in such a way that the process that takes place is anElectroPhoretic Deposition (EPD). These crystals act as seeds or crystallization nuclei so that the chosen reaction may be structure sensitive.

Results
In this PhD Thesis the preparation of zeolite membranes on carbon supports by seeding of the supports by electrochemical methods based on the electrical/conductive properties of carbon has been analysed. In this manner, by using the carbon support as an electrode in an electrophoresis process, we have managed to deposit a coating of colloidal zeolite crystals on the carbon starting material, in such a way that the process that takes place is an ElectroPhoretic Deposition (EPD). These crystals have yielded composites that possess good permeation properties combined with moderate O₂/N₂ separation factors.

The prepared materials were screened for their catalytic properties in the semihydrogenation (i.e. selective hydrogenation) of phenylacetylene, yielding very interesting results:
- The TurnOver Frequency (TOF) of the Pd nanoparticles supported on “classical” inorganic materials (i.e. alumina) was not significantly different from the value found for the homogenous catalysts.
- Carbon materials are good supports for Pd nanoparticles, although samples with a low external surface area present significant agglomeration of the catalyst.
- Mesoporous materials do not differ markedly from microporous inorganic oxides such as zeolite or commercial alumina in the semihydrogenation of phenylacetylene.
- The prepared catalysts are stable for 5 catalytic cycles, thus showing their robustness.
- Phenylacetylene conversion and selectivity towards styrene values ranged from 90 to 98%, clearly showing the potential of the prepared systems.
- TOF values for the samples prepared following the “simultaneous synthesis” protocol were the highest for all the catalyst series, indicating that the chosen reaction may be structure sensitive.

In this PhD Thesis the preparation of zeolite membranes on carbon supports by seeding of the supports by electrochemical methods based on the electrical/conductive properties of carbon has been analysed. In this manner, by using the carbon support as an electrode in an electrophoresis process, we have managed to deposit a coating of colloidal zeolite crystals on the carbon starting material, in such a way that the process that takes place is an ElectroPhoretic Deposition (EPD). These crystals act as seeds or crystallization nuclei so that the synthesis of continuous layers of zeolite on our support by hydrothermal treatment is significantly improved. Hydrothermal synthesis is performed on the resulting materials giving rise to a continuous...
zeolite layer covering to totality of the surface of the carbon support. The resulting composites have been tested for their permeation properties in a Wicke-Kallenbach cell (Figure 2), showing both high permeation fluxes and good O₂/N₂ separation factors.

Conclusions

A novel methodology has been developed for the direct incorporation of metallic nanoparticles inside mesoporous matrices, which we have named “simultaneous synthesis”. The prepared catalysts have shown excellent activity and selectivity in a selective hydrogenation reaction (phenylacetylene semihydrogenation). Catalysts prepared following the simultaneous synthesis protocol showed the highest activity values (expressed as TOF) for all the analyzed samples, which clearly reveals the importance of not only the support, but also the catalyst preparation method.

Focusing on the improvement of membrane characteristics, from the preparation of the first membrane reported in our research group, our interest focused on the improvement of the preparation of these materials, applying the secondary growth methodology, which consists on the seeding of the support with zeolite crystalline seeds prior to hydrothermal treatment. Nevertheless, the way this seeding was applied was by the electrophoretic deposition of colloidal LTA (i.e. zeolite A) crystals, thus not only opening new possibilities with regards to the preparation of membranes, but also making it possible to better control the conditions under which it was possible to grow continuous layers of zeolite on carbon discs. Furthermore, when the carbon support is seeded prior to hydrothermal treatment, the oxidation of the support is no longer a critical issue to obtain a zeolite membrane, having the composites good membrane properties.

Related publications


Full Thesis can be downloaded from http://hdl.handle.net/10045/24115