

XVI REUNIÓN

Tabla 2. Análisis elemental de CQDs filtrados y dializados

Muestra	C (ms.%)	H (ms.%)	N (ms.%)	C/N
N-CDs-6.3-F	37.9	7.9	18.1	2.44
N-CDs-6.3-D	42.6	8.0	18.9	2.63
N-CDs-2-F	39.1	7.6	17.1	2.66
N-CDs-2-D	43.2	7.8	18.4	2.74

Conclusiones

Se prepararon CQDs a partir de mezclas de piel de naranja y EDA y se consiguieron rendimientos cuánticos de hasta 8.6 %. La purificación mediante diálisis solamente mejora el rendimiento en el caso de la relación N:EDA=6.3.

Agradecimientos

Los autores agradecen al Principado de Asturias el apoyo a través del proyecto AYUD/2021/51705

Referencias

^[1] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angewandte Chemie International Edition. 52 (2013) 3953–3957. https://doi.org/10.1002/anie.201300519.

^[2] S.N. Baker, G.A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights, Angewandte Chemie International Edition. 49 (2010) 6726–6744. https://doi.org/10.1002/anie.200906623

^[3] J. Zhang, A. Xia, H. Chen, A.-S. Nizami, Y. Huang, X. Zhu, X. Zhu, Q. Liao, Science of The Total Environment. 839 (2022) 156144. https://doi.org/10.1016/j.scitotenv.2022.156144

^[4] X. Lin, M. Xiong, J. Zhang, C. He, X. Ma, H. Zhang, Y. Kuang, M. Yang, Q. Huang, Microchemical Journal. 160 (2021) 105604. https://doi.org/10.1016/j.microc.2020.105604

^[5] A.K. Singh, V.K. Singh, M. Singh, P. Singh, Sk.R. Khadim, U. Singh, B. Koch, S.H. Hasan, R.K. Asthana, Journal of Photochemistry and Photobiology A: Chemistry. 376 (2019) 63–72. https://doi.org/10.1016/j.jphotochem.2019.02.023

^[6] M. Wang, R. Shi, M. Gao, K. Zhang, L. Deng, Q. Fu, L. Wang, D. Gao, Food Chemistry. 318 (2020) 126506. https://doi. org/10.1016/j.foodchem.2020.126506

Preparación de "Carbon Quantum Dots" a partir de residuos cítricos

M. Rodríguez*, M.F. Vega, E. Díaz-Faes, C. Barriocanal

Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, 33011 Oviedo.

marta.r.b@incar.csic.es

Palabras clave: residuos cítricos, carbonización hidrotermal, diálisis, carbon quantum dots.

Introducción

Los "carbon quantum dots" (CQDs) son nanomateriales de carbono de estructura esférica y tamaño cercano a los 10 nm. Tienen propiedades fluorescentes y presentan ventajas para muchas aplicaciones tales como bioimagen, diagnosis médica, catálisis o en equipos fotovoltaicos. Los CQDs son especialmente interesantes por la facilidad para modular sus propiedades o su bio-compatibilidad. Tienen una estructura tipo sp² como el grafito y además contienen grupos funcionales oxigenados en la superficie que facilita su solubilidad en agua [1,2]. La síntesis de CQDs puede hacerse a partir de compuestos puros como ácidos cítrico o ascórbico pero también se han utilizado residuos de productos naturales como la naranja, plátano o aloe vera [3,4]. Enmarcado en este contexto los objetivos del presente trabajo se centran en la preparación de CQDs a partir de residuos de cítricos.

Experimental

Para la preparación de los CQDs se utilizó piel de naranja (N) y etilendiamina ($C_2H_8N_2$, CAS: 107-15-3). La síntesis se llevó a cabo mediante carbonización hidrotermal a 180 °C durante 8 h. Se carbonizaron mezclas de 1 g de piel de naranja a la que se añadieron cantidades variables de etilendiamina (EDA) entre 160 y 1280 µl para conseguir las siguientes relaciones N:EDA: 0.8, 1.6, 3.1, 6.3 expresado en mg/ µl. Se hizo además otro ensayo con 5 g de N y una relación N:EDA de 2. El líquido obtenido de la carbonización se pasa por un filtro de 0.2 µm y posteriormente se purifica mediante diálisis y se liofiliza. De esta forma se obtienen muestras solamente filtradas (F) y otras que además se dializan (D). La nomenclatura utilizada incluye el valor la relación N:EDA y la letra correspondiente al grado de purificación. Así N-CDs-6.3-F se corresponde con una muestra preparada con una relación N:EDA de 6.3 y filtrada. Se llevó a cabo análisis elemental en un LECO CHN2000 (ASTM D5373-02). El rendimiento cuántico (Q) se determinó en un espectrofluorímetro Edimburgh Instruments FS5.

Resultados y discusión

Se determinó el rendimiento cuántico de los CQDs, tanto de los filtrados como dializados (Tabla 1). Se obtienen valores entre 5.71 y 8.63 % con valores similares para las muestras filtradas y dializadas, observándose únicamente una mejora debida a la mayor purificación en el caso de la muestra N-CDs-6.3. Otros autores trabajando también con biomasa como materia prima obtuvieron rendimientos cuánticos alrededor de 8 % [5]. Wang et at. obtuvo rendimientos cuánticos entre 5 y 8 % para la mayoría de los CDs sintetizados a partir de 14 tipos diferentes de piel de naranja [6].

Para los siguientes análisis se eligieron las muestras que mostraron un mayor Q. El análisis elemental (Tabla 2) es similar para para las 4 muestras, aunque se observa que el contenido en C de las muestras dializadas aumenta, así como la relación atómica C/N.

Tabla 1. Rendimiento cuántico de los CQDs filtrados y dializados.

Muastra	Q (%)		
Muestra	Filtrada	Dializada	
N-CDs-6.3	7.16	8.12	
N-CDs-3.1	6.17	5.73	
N-CDs-2	8.63	8.04	
N-CDs-1.6	6.18	5.92	
N-CDs-0.8	5.88	5.71	

Otros autores utilizando análisis mediante energía dispersiva de rayos X (EDS) obtuvieron valores alrededor del 70 % de C y 6 % de N [6], sin embargo se han publicado valores de 37 % C que son similares a los obtenidos en el presente trabajo [2].

Bol. Grupo Español Carbón